...
首页> 外文期刊>Heat transfer >Dimension optimization of two air cavities thermal insulator as an application in buildings
【24h】

Dimension optimization of two air cavities thermal insulator as an application in buildings

机译:两个气孔绝热材料的尺寸优化在建筑中的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The present study investigates the use of two air cavities thermal insulator in buildings. The two air cavities insulator structure is supposed to be located within the building's wall and roof forming two separated vertical and horizontal cavity, respectively. In addition, the wall cavity height (or roof cavity length), H, was investigated at H= 2,3,4,5 m to find the influence of wall cavity height (or roof cavity length) on various thermal characteristics and thus to determine the thermal optimum thickness. At each wall cavity height (and roof cavity length), cavity thickness, L_c, was varied from 0.01 m to 0.1 m forming aspect ratio, AR = H/L_c ranges of 20 to 200, 30 to 300, 40 to 400, and 50 to 500 for H = 2, 3, 4, and 5 m, respectively. The present results reveal the presence of the first and second cavities in wall and roof at various thicknesses affecting the development of wall and roof components' surface temperature. In addition, varying the wail cavity height or roof cavity length has further significant effects on the development of these surface temperatures. Moreover, it was found that increasing the wall cavity height leads to increasing the optimum wall cavity thickness, L_c = 0.024, 0.027, 0.029, and 0.031 m at cavity height, H=2,3, 4, and 5 m, respectively, whereas in the roof cavity case, the optimum roof cavity thickness seems to reach its asymptotic value at about 0.019 m for the roof cavity length investigated, H = 2,3, 4, and 5 m despite the optimum wall cavity thickness that was not.
机译:本研究调查了在建筑物中使用两个气腔热绝缘体的情况。假定这两个气孔隔热结构位于建筑物的墙壁和屋顶内,分别形成两个垂直和水平的气孔。另外,在H = 2,3,4,5 m处研究了壁腔高度(或屋顶腔长度)H,以发现壁腔高度(或屋顶腔长度)对各种热特性的影响,从而对确定最佳的热厚度。在每个壁腔高度(和屋顶腔长度)处,腔的厚度L_c在0.01 m到0.1 m之间变化,形成长宽比,AR = H / L_c范围为20到200、30到300、40到400和50对于H = 2、3、4和5 m,分别为500至500。目前的结果表明,壁和屋顶中的第一腔和第二腔的厚度各不相同,影响了壁和屋顶组件表面温度的变化。另外,改变壁腔高度或屋顶腔长度对这些表面温度的发展具有进一步的显着影响。此外,已发现增加壁腔高度会导致最佳壁腔厚度增加,在腔高度H = 2.3、4、5和5 m时,L_c分别为0.024、0.027、0.029和0.031 m,而在屋顶空腔的情况下,尽管没有获得最佳壁腔厚度,但对于所研究的屋顶腔长度,最佳屋顶腔厚度似乎达到了约0.019 m的渐近值,H = 2,3、4和5 m。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号