首页> 外文期刊>Heat Transfer Engineering >Thermally Developing Forced Convection of Non-Newtonian Fluids Inside Elliptical Ducts
【24h】

Thermally Developing Forced Convection of Non-Newtonian Fluids Inside Elliptical Ducts

机译:椭圆形管道内非牛顿流体的热发展强迫对流

获取原文
获取原文并翻译 | 示例
       

摘要

Laminar-forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumptions used in this work are a non-Newtonian fluid, laminar flow, constant physical properties, and negligible axial heat diffusion (high Peclet number). Most of the previous research in elliptical ducts deal mainly with aspects of fully developed laminar flow forced convection, such as velocity profile, maximum velocity, pressure drop, and heat transfer quantities. In this work, we examine heat transfer in a hydrodynamically developed, thermally developing laminar forced convection flow of fluid inside an elliptical tube under a second kind of a boundary condition. To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform, where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number, and the average Nusselt number for various cross-section aspect ratios.
机译:在低雷诺数热交换器设备的设计中,各种横截面形状的管内层流强迫对流是令人关注的。传热到简单几何形状的管(例如圆形管,平行板或环形管)内的热发展,水动力发展的强迫对流已在文献中进行了充分的研究,并在各种书籍中都有记录,但是对于椭圆形管道,没有太多的工作要做。在这项工作中使用的主要假设是非牛顿流体,层流,恒定的物理特性以及可忽略的轴向热扩散(高Peclet数)。先前在椭圆形管道中进行的大多数研究主要涉及充分发展的层流强迫对流方面,例如速度分布,最大速度,压降和传热量。在这项工作中,我们研究了在第二种边界条件下,在椭圆管内部的流体动力学发展,热发展的层流强迫对流中的热传递。为了解决热发展问题,我们使用广义积分变换技术(GITT),也称为Sturm-Liouville变换。实际上,这种积分变换是有限傅立叶变换的推广,其中正弦和余弦函数被更通用的正交函数集所代替。为了避免椭圆形管壁的不规则形状,将轴从笛卡尔坐标系代数转换为椭圆坐标系。然后,将GITT应用于变换和解决问题并获得曾经未知的温度场。之后,可以计算并显示实际感兴趣的数量,例如各种横截面纵横比的总体流体温度,局部Nusselt数和平均Nusselt数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号