首页> 外文期刊>Heat Transfer Engineering >Convective Heat Transfer in the Reusable Solid Rocket Motor of the Space Transportation System
【24h】

Convective Heat Transfer in the Reusable Solid Rocket Motor of the Space Transportation System

机译:航天运输系统可重复使用的固体火箭发动机中的对流传热

获取原文
获取原文并翻译 | 示例
       

摘要

This simulation involved a two-dimensional axisymmetric model of a full-motor initial grain of the reusable solid rocket motor of the Space Transportation System. It was conducted with the computational fluid dynamics (CFD) commercial code FLUENT~®. This analysis was performed to maintain continuity with most related previous analyses; serve as a non-vectored baseline for any three-dimensional vectored nozzles; provide a relatively simple application and test for various CFD solution schemes, grid sensitivity studies, turbulence modeling, and heat transfer; and calculate nozzle convective heat transfer coefficients. The theoretical prediction of turbulent convective heat transfer in supersonic nozzles is scarce and challenging. The accuracy of the present results and the selection of the numerical schemes and turbulence models were based on matching the rocket ballistic predictions of mass flow rate, head end pressure, measured chamber pressure drop and vacuum thrust, and specific impulse. The matching for these ballistic predictions was found to be good. This study was limited to convective heat transfer, and the results compared favorably with some of the methods cited. Good agreement with the backed-out data of the ratio of the convective heat transfer coefficient to the specific heat at a constant pressure was made at the nozzle throat. Qualitative agreement was achieved upstream and downstream of the nozzle throat due to effects that are absent in this study. These backed-out data were devised to match nozzle erosion that resulted from the combination of heat transfer (convective, radiative, and conductive), chemical (transpiration), and mechanical (shear and panicle impingement forces) effects. To the author's knowledge, these effects have not been investigated/reported simultaneously.
机译:该模拟涉及空间运输系统的可重复使用的固体火箭发动机的全发动机初始颗粒的二维轴对称模型。它以计算流体动力学(CFD)商业代码FLUENT〜®进行。进行此分析是为了保持与大多数相关的先前分析的连续性;用作任何三维矢量喷嘴的非矢量基线;为各种CFD解决方案,网格灵敏度研究,湍流建模和传热提供相对简单的应用和测试;并计算喷嘴的对流传热系数。超音速喷嘴中湍流对流换热的理论预测是稀缺且具有挑战性的。本研究结果的准确性以及对数值方案和湍流模型的选择均基于匹配质量流量,头端压力,测得的腔室压降和真空推力以及比冲的火箭弹道预测。这些弹道预测的匹配被发现是很好的。这项研究仅限于对流传热,其结果与所引用的某些方法相比具有优势。在喷嘴喉部,与在恒定压力下对流传热系数与比热之比的备份数据很好地吻合。由于本研究中没有影响,因此在喷管喉咙的上游和下游达成了定性共识。设计这些后退数据以匹配由热传递(对流,辐射和传导),化学(蒸腾)和机械(剪切力和穗撞击力)作用共同导致的喷嘴腐蚀。据作者所知,尚未同时研究/报告这些影响。

著录项

  • 来源
    《Heat Transfer Engineering》 |2005年第10期|p.30-45|共16页
  • 作者

    RASHID A. AHMAD;

  • 作者单位

    Design and Analysis, Science and Engineering, ATK Thiokol, an Alliant Techsystems Affiliate, Brigham City, UT 84302-0707;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工业用热工设备;
  • 关键词

  • 入库时间 2022-08-18 00:20:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号