首页> 外文期刊>Heat Transfer Engineering >Predictions of Flow and Heat Transfer in Low Emission Combustors
【24h】

Predictions of Flow and Heat Transfer in Low Emission Combustors

机译:低排放燃烧室的流动和传热预测

获取原文
获取原文并翻译 | 示例
       

摘要

Flow and heat transfer predictions in modern low emission combustors are critical to maintaining the liner wall at reasonable temperatures. This study is the first to focus on a critical issue for combustor design. The objective of this paper is to understand the effect of different swirl angle for a dry low emission (OLE) combustor onflow and heat transfer distributions. This paper provides the effect of fuel nozzle swirl angle on velocity distributions, temperature, and surface heat transfer coefficients. A simple test model is investigated with flow through fuel nozzles without reactive flow. The fuel nozzle angle is varied to obtain different swirl conditions inside the combustor. The effect of flow Reynolds number and swirl number are investigated using FLUENT. Different RANS-based turbulence models are tested to determine the ability of these models to predict the swirling flow. For comparison, different turbulence models such as standard κ - ε, realizable κ - ε, and shear stress transport (SST) κ - ω turbulence model were studied for non-reactive flow conditions. The results show that, for a high degree swirl flow, the SST κ-ω model can provide more reasonable predictions for recirculation and high velocity gradients. With increasing swirl angle, the average surface heat transfer coefficient increases while the average static temperature will decrease. Preliminary analysis shows that the κ - ω model is the best model for predicting swirling flows. Also critical is the effect of the swirling flows on the liner wall heat transfer. The strength and magnitude of the swirl determines the local heat transfer maxima location. This location needs to be cooled more effectively by various cooling schemes.
机译:现代低排放燃烧器的流量和传热预测对于将衬管壁保持在合理的温度至关重要。这项研究是第一个专注于燃烧器设计关键问题的研究。本文的目的是了解干低排放(OLE)燃烧器的流量和传热分布对不同旋流角的影响。本文提供了燃料喷嘴旋流角对速度分布,温度和表面传热系数的影响。在没有反应流的情况下,通过燃料喷嘴的流量研究了一个简单的测试模型。改变燃料喷嘴角度以获得燃烧器内部的不同涡旋条件。使用FLUENT研究了流动雷诺数和旋流数的影响。测试了基于RANS的不同湍流模型,以确定这些模型预测旋流的能力。为了进行比较,针对非反应性流动条件,研究了不同的湍流模型,例如标准κ-ε,可实现的κ-ε和切应力传递(SST)κ-ω湍流模型。结果表明,对于高度旋流,SSTκ-ω模型可以为再循环和高速梯度提供更合理的预测。随着旋流角的增加,平均表面传热系数增加,而平均静态温度将降低。初步分析表明,κ-ω模型是预测旋流的最佳模型。旋流对衬套壁传热的影响也很关键。旋流的强度和大小决定了局部传热的最大值位置。该位置需要通过各种冷却方案更有效地冷却。

著录项

  • 来源
    《Heat Transfer Engineering》 |2008年第4期|p.375-384|共10页
  • 作者单位

    Mechanical Engineering Department, Louisiana State University, Baton Rouge, Louisiana, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工业用热工设备;
  • 关键词

  • 入库时间 2022-08-18 00:19:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号