首页> 外文期刊>Heat Transfer Engineering >Numerical Investigation of the Entropy Generation Due to Natural Convection in a Partially Heated Square Cavity Filled With Nanofluids
【24h】

Numerical Investigation of the Entropy Generation Due to Natural Convection in a Partially Heated Square Cavity Filled With Nanofluids

机译:纳米流体填充的部分加热方腔中自然对流产生的熵的数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

A comprehensive numerical investigation has been carried out on the heat transfer performance and entropy generation within a rectangular cavity containing nanofluid. The cavity consists of two heat sources located on the bottom and a side wall. The effects of influential parameters including type and concentration of nanoparticles, radius of corner, width and thickness of heaters, heater distance from corners and aspect ratio of the enclosure were studied. The results showed that the Nusselt number enhanced by increasing the aspect ratio of the cavity, the distance of heaters from the corners, and concentration of nanoparticle and applying Cu as nanoparticle while it reduced by increasing the radius of the corner and the width and thickness of the heat sources. The entropy generation was found to be profoundly minimized by lowering the Rayleigh number. In addition, the entropy generation was attenuated by increasing the Eckert number, corner radius, the distance from the corner and concentration of nanoparticles and using AI_2O_3 as nanoparticle. On the other hand, increasing the aspect ratio of the cavity, width and thickness of the heaters augmented the entropy generation. Interestingly, the entropy generation of the system was lowered by just increasing the distance of one heater from the corner, whereas increasing the thickness and width of one heater resulted in larger entropy generation. This study provides valuable insight into the change in the amount of heat transfer and entropy by altering the geometry as well as fluid properties.
机译:已经对包含纳米流体的矩形腔内的传热性能和熵产生进行了全面的数值研究。空腔由位于底部和侧壁上的两个热源组成。研究了影响因素的影响,包括纳米颗粒的类型和浓度,拐角半径,加热器的宽度和厚度,加热器到拐角的距离以及外壳的长宽比。结果表明,通过增加腔体的长径比,加热器到拐角的距离,纳米颗粒的浓度以及使用铜作为纳米颗粒,可通过增加拐角的半径,宽度和厚度来减小Nusselt数,而努氏数则减小。热源。发现通过降低瑞利数可以极大地减少熵的产生。此外,通过增加埃克特数,拐角半径,距拐角的距离和纳米粒子的浓度并使用AI_2O_3作为纳米粒子,可减少熵的产生。另一方面,增加空腔的长宽比,加热器的宽度和厚度会增加熵的产生。有趣的是,仅通过增加一个加热器到角落的距离就可以降低系统的熵产生,而增加一个加热器的厚度和宽度会导致更大的熵产生。这项研究通过改变几何形状和流体特性,为热传递和熵的变化提供了有价值的见解。

著录项

  • 来源
    《Heat Transfer Engineering》 |2017年第18期|1506-1521|共16页
  • 作者单位

    Department of Mechanical Engineering, University of Alberta, Edmonton, Canada;

    Department of Mechanical Engineering, University of Alberta, Edmonton, Canada;

    Department of Mechanical Engineering, University of Alberta, Edmonton, Canada;

    Department of Mechanical Engineering, University of Alberta, Edmonton, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:17:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号