首页> 外文期刊>Heat Transfer Engineering >Improved Scaling Analysis for Heat Transfer in a Circular Tube With Various Supercritical Fluids Using Computational Fluid Dynamics Simulations
【24h】

Improved Scaling Analysis for Heat Transfer in a Circular Tube With Various Supercritical Fluids Using Computational Fluid Dynamics Simulations

机译:利用计算流体动力学模拟改进的圆管内各种超临界流体传热的尺度分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The operating conditions of supercritical water cooler reactor (SCWR) are well above the critical point of water, so it is not possible to investigate its heat transfer aspects through laboratory experiments without industry-scale support. The most feasible alternative can be to scale-down the operating parameters by fluid-to-fluid scaling with a suitably chosen scaling fluid. However, it is impossible to incorporate all phenomenological factors of an intricate system like the SCWR through simple analytical scaling. This study demonstrates the limitation of fluid-to-fluid scaling in such situations and suggests the incorporation of computational fluid dynamics simulation as a subsequent step for better scaling. A scaling methodology from the published literature is adopted. Carbon dioxide and R134a have been considered as scaling fluids to identify the parameter ranges suitable for lab-scale simulation of the SCWR. A circular tube of 8 mm diameter and 1500 mm length is taken for simulation. A grid dependency test is done and the standard k — ε turbulence model is selected. The developed computational model showed amicable agreement with existing experimental data. Analytically scaled-down parameters failed to simulate the axial and radial temperature profiles of the prototype. Increase in wall heat flux and reduction in mass flow rate are suggested as two possible options for achieving better profile matching. The modified values of scaled parameters with respect to a particular prototypical condition are reported. Profiles with CO_2 as model fluid show better agreement with water as compared to R134a and hence this is recommended for use in lab experiments.
机译:超临界水冷却器反应堆(SCWR)的运行条件远高于水的临界点,因此没有工业规模的支持,就不可能通过实验室实验来研究其传热方面。最可行的替代方法是通过使用适当选择的水垢流体进行流体到流体的水垢缩小操作参数。但是,不可能通过简单的分析标度将诸如SCWR之类的复杂系统的所有现象学因素纳入其中。这项研究证明了在这种情况下流体到流体的结垢的局限性,并建议将计算流体动力学模拟的合并作为更好的结垢的后续步骤。采用来自公开文献的缩放方法。二氧化碳和R134a被认为是结垢流体,以识别适用于SCWR实验室规模模拟的参数范围。取直径为8 mm,长度为1500 mm的圆管进行模拟。进行了网格相关性测试,并选择了标准k_ε湍流模型。所开发的计算模型与现有实验数据显示出友好的一致性。分析性按比例缩小的参数无法模拟原型的轴向和径向温度曲线。建议增加壁热通量和降低质量流率,作为实现更好的轮廓匹配的两个可能的选择。报告了关于特定原型条件的缩放参数的修改值。与R134a相比,以CO_2作为模型流体的剖面显示出与水更好的一致性,因此建议在实验室实验中使用。

著录项

  • 来源
    《Heat Transfer Engineering》 |2017年第4期|149-161|共13页
  • 作者单位

    Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, India;

    Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, India;

    Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号