...
首页> 外文期刊>Heat and mass transfer >Molecular dynamics simulation of liquid argon flow at platinum surfaces
【24h】

Molecular dynamics simulation of liquid argon flow at platinum surfaces

机译:铂表面液态氩流动的分子动力学模拟

获取原文
获取原文并翻译 | 示例

摘要

The micro Poiseuille flow for liquid argon flowing in a nanoscale channel formed by two solid walls was studied in the present paper. The solid wall material was selected as platinum, which has well established interaction potential. We consider the intermolecular force not only among the liquid argon molecules, but also between the liquid argon atoms and the solid wall particles, therefore three regions, i.e. the liquid argon computation domain, the top and bottom solid wall regions are included for the force interaction. The present MD (Molecular Dynamics) simulation was performed without any assumptions at the wall surface. The objective of the study is to find how the flow and the slip boundaries at the wall surface are affected by the applied gravity force, or the shear rate. The MD simulations are performed in a non-dimensional unit system, with the periodic boundary conditions applied except in the channel height direction. Once the steady state is reached, the macroscopic parameters are evaluated using the statistical mechanics approach. For all the cases tested numerically in the present paper, slip boundaries occur, and such slip velocity at the stationary wall surface increases with increasing the applied gravity force, or the shear rate. The slip length, which is denned as the distance that the liquid particles shall travel beyond the wall surfaces to reach the same velocity as the wall surface, sharply decreases at small shear rate, then slightly decreases with increasing the applied shear rate. We observe that the liquid viscosity remains nearly constant at small shear rates, and the Newtonian flow occurs. However, with increasing the shear rate, the viscosity increases and the non-Newtonian flow appears.
机译:本文研究了液氩在由两个固体壁形成的纳米级通道中流动的微泊瓦流。固体壁材料被选为铂,具有良好的相互作用潜力。我们不仅考虑液态氩分子之间的分子间力,而且考虑液态氩原子与固体壁颗粒之间的分子间力,因此包括三个区域,即液态氩计算域,顶部和底部固体壁区域以进行力相互作用。 。在没有任何假设的情况下,执行了本MD(分子动力学)模拟。该研究的目的是发现壁面处的流动和滑动边界如何受到施加的重力或剪切速率的影响。 MD模拟是在无量纲单位系统中执行的,除了通道高度方向外,还应用了周期性边界条件。一旦达到稳态,就使用统计力学方法评估宏观参数。对于在本文中进行数值测试的所有情况,都会出现滑移边界,并且固定壁表面的滑移速度会随着施加的重力或剪切速率的增加而增加。滑移长度定义为液体颗粒应越过壁表面达到与壁表面相同的速度的距离,它在小剪切速率下急剧减小,然后随着所施加的剪切速率的增加而略微减小。我们观察到液体粘度在小剪切速率下几乎保持恒定,并发生牛顿流。然而,随着剪切速率的增加,粘度增加并且出现非牛顿流。

著录项

  • 来源
    《Heat and mass transfer 》 |2004年第11期| p.859-869| 共11页
  • 作者

    J. L. Xu; Z. Q. Zhou;

  • 作者单位

    Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No.81 Xianlie Zhong Rd., Guangzhou, 510070, P.R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 力学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号