首页> 外文期刊>Haptics, IEEE Transactions on >Co-Actuation: A Method for Achieving High Stiffness and Low Inertia for Haptic Devices
【24h】

Co-Actuation: A Method for Achieving High Stiffness and Low Inertia for Haptic Devices

机译:共启动:用于实现触觉装置高刚度和低惯性的方法

获取原文
获取原文并翻译 | 示例
       

摘要

Achieving high stiffness and low inertia is a big challenge for current haptic devices. Impedance-based devices are limited in providing high stiffness while, in contrast, admittance-based devices are limited in generating low inertia. Thus, it is difficult to simulate hard contact and small inertia simultaneously in virtual environments. In this paper, we introduce a co-actuation module to overcome this difficulty. The module is a one degree-of-freedom (DOF) revolute joint which consists of a link and a physical constraint with a clearance between the two components. A motor controls the physical constraint moving cooperatively with the link. In free space, the constraint has no contact to the link and thus, users can move the link freely without feeling the inertia of the motor. In constrained space, the constraint comes into contact with the link and thus, users can feel a resistance from the motor. By means of a direct physical contact between the link and the constraint, users can feel a hard virtual surface. This paper describes the principle and the implementation of the proposed co-actuation module. Performance evaluation was conducted using a two-DOF haptic device in a task workspace of 100 mm x 100 mm. The effective inertia of the device is 64-142 g within the task workspace. The device can stably render a virtual wall with stiffness as high as 65 N/mm. The penetration to the virtual wall was 0.02-0.41 mm when tapping the wall with a speed range of 80-320 mm/s. The maximum back driving force was about 0.19 N when moving within 4.5-8.6 mm/s. The experimental results demonstrate that the concept of co-actuation is feasible in achieving high force, high stiffness range and low inertia for haptic devices.
机译:实现高刚度和低惯性是目前触觉设备的重要挑战。基于阻抗的设备在提供高刚度方面受到限制,同时,相反,基于导纳的设备在产生低惯性时受到限制。因此,难以在虚拟环境中同时模拟硬接触和小惯性。在本文中,我们介绍了一个共同驱动模块来克服这种困难。该模块是一种自由度(DOF)旋转接头,其包括链路和物理约束,具有两个组件之间的间隙。电动机控制与链路合作移动的物理约束。在自由空间中,约束没有与链接接触,因此,用户可以自由地移动链接而不会感到电机的惯性。在约束空间中,约束与链路接触,因此,用户可以感受到电动机的阻力。通过链路与约束之间的直接物理接触,用户可以感受到硬虚拟表面。本文介绍了所提出的共同驱动模块的原理和实施。在100 mm x 100 mm的任务工作空间中使用双DOF触觉设备进行性能评估。该设备的有效惯性在任务工作空间中为64-142克。该装置可以稳定地使虚拟壁具有高达65 n / mm的刚度。在敲击壁的速度范围为80-320mm / s时,对虚拟壁的渗透为0.02-0.41 mm。在4.5-8.6mm / s内移动时,最大后驱动力为约0.19 n。实验结果表明,共致动的概念在实现高力,高刚度范围和用于触觉装置的低惯性方面是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号