...
首页> 外文期刊>GSA Bulletin >Transport and deposition of a pyroclastic surge across an area of high relief: The 18 May 1980 eruption of Mount St. Helens, Washington
【24h】

Transport and deposition of a pyroclastic surge across an area of high relief: The 18 May 1980 eruption of Mount St. Helens, Washington

机译:火山碎屑浪潮在高起伏区的运输和沉积:1980年5月18日,华盛顿圣海伦斯火山喷发

获取原文
获取原文并翻译 | 示例
           

摘要

The 08:32 PDT 18 May 1980 Mount St. Helens eruption began as an explosion (blast) that produced a laterally flowing pyro-clastic current (blast surge). It moved outward in a 180° arc at supersonic speeds and then slowed to subsonic speeds. Supersonic flow severely eroded the ground and produced a ground layer (formerly, layer A0). Above the ground layer lies the deposit derived from the blast surge. The blast surge deposits formed in three continuous and concurrent stages. The first stage was movement of the transport system (that is, the blast surge), carrying fragments most of the distance from the vent. The next two stages involved the depositional system. This system developed from rapidly accumulating sediment by gravity segregation at the base of the blast surge. Two stages of sediment gravity flows with independent flow regimes formed sequentially in rapid succession from the moving blast surge. Each moved downhill due to gravity, independently of the generating blast surge that was driven by explosive expansion. Units repeated in some sections are deposits derived from divergent and crossing surge lobes caused by irregular topography. Locally ponded massive deposits in valleys and depressions formed from gas-rich pyroclastic flows and originated in two ways: (1) topographic blocking by steep, volcano-facing slopes. Blocking includes diversion or damming of the lower-elevation, high-density part of the blast surge that could not surmount high ridges. (2) Also occurring to form valley ponds was drainage of just-deposited (or "almost deposited") material from steep slopes (>30°-35°), moving downhill in all slope directions into separate valleys or depressions. Distances traveled by the blast surge, and rates at which coarsest fragments decrease laterally, are related to the topographic "grain." Surge runout was farther where flow directions paralleled topographic trends, and least where trends were at right angles to the flow. Obstacle-interference depositional patterns (thinning-thickening; rapid fine-to-coarse facies changes) caused a spread in median diameter values that are as great in local areas near the volcano as they are over the width of the devastated region.
机译:PDT 1980年5月18日晚上8:32,圣海伦斯火山爆发是由爆炸(爆炸)产生的,产生了横向流动的热碎屑电流(爆炸浪涌)。它以 超音速以180°弧度向外移动,然后减慢至亚音速。超音速 流严重腐蚀了地面并产生了接地层 (以前是A0层)。地表层上方是爆炸冲击波沉积物 爆炸冲击波沉积物在三个连续且同时的 阶段形成。第一步是运输系统 的运动(即爆炸冲击波),携带碎片离开通风口的大部分距离 。接下来的两个阶段涉及沉积 系统。该系统是通过爆炸冲击波底部的重力分离快速沉积沉积物而发展起来的。由动爆冲击快速连续形成的两个阶段 具有独立的流动形式的独立流态。 每个因重力而下坡由爆炸性膨胀驱动的 爆炸冲击波的数量。在某些部分中,重复的 单位是由于地形不规则导致的发散和交叉的surge lobs而产生的沉积物。在富含气体的火山碎屑 流形成的山谷和洼地中,局部存在大量的 沉积物,其起源有两种:(1)地形被 陡峭地阻挡,面向火山的斜坡。阻塞包括导风或爆炸的坝段,这些坝段无法跨越高隆起的爆炸 浪的低海拔高密度部分。 (2)还在形成 形成山谷池塘的是从陡坡(> 30°-35°)排放刚刚沉积的(或“几乎 沉积”的)材料, sup> 在所有坡度方向上下坡进入单独的山谷 或洼地。 爆炸潮所经过的距离以及最粗糙的 碎片横向减少,与地形 “谷物”有关。在水流方向平行于 地形趋势的地方,喘振跳动更远,而在趋势与水流成直角 的地方,浪涌跳动更远。障碍物的沉积模式(变薄变薄; 快速的细到粗相变)导致中值 的值在火山附近的局部区域扩展很大 ,因为它们超过了受灾区域的宽度。

著录项

  • 来源
    《GSA Bulletin》 |1990年第8期|1038-1054|共17页
  • 作者

    RICHARD V. FISHER;

  • 作者单位

    Department of Geological Sciences, University of California, Santa Barbara, California 93106;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号