...
首页> 外文期刊>Granular matter >Rattler wedging and force chain buckling: metastable attractor dynamics of local grain rearrangements underlie globally bistable shear banding regime
【24h】

Rattler wedging and force chain buckling: metastable attractor dynamics of local grain rearrangements underlie globally bistable shear banding regime

机译:棘手楔形和力链屈曲:局部双晶重整的亚稳态吸引子动力学是全球双稳态剪切带机制的基础

获取原文
获取原文并翻译 | 示例
           

摘要

Grain rearrangements govern the mechanical response of granular materials under load. A comprehensive time series analysis of macroscopic stress, previously undertaken for the persistent shear banding regime, uncovered a bistable dynamical system with two interconnected attractor basins-one tied to jamming, the other to unjamming. Here we examine the state space of local fabric of a 3D granular material to uncover the underlying grain rearrangements which induce the system to switch basins and manifest macroscopic quasistationary dynamics. The fabric state space comprises metastable attractors organized according to structural determinacy: hypostatic, isostatic and hyperstatic. Although trajectories overwhelmingly favor identity transitions which preserve local fabric, rare nonidentity transitions hold the key to basin switching. Jamming basin dynamics is governed by force chain transitions in the hyperstatic region: here redundant constraints enable force reconfigurations with little to no change in the local fabric. But as force chains become overloaded, they buckle. Buckling and attendant dilatancy push grains to the isostatic region. This in turn triggers unjamming and ensuant transitions to the hypostatic region where rattlers, though few, dominate dynamics. Rattlers provide wedge-like supports to unstable misaligned particle columns, promoting force chain formation and return to the hyperstatic region. The lateral reinforcement of an isostatically constrained grain in a trimer by the addition of a contact and/or a 3-cycle is the most probable nonidentity transition during nascent force chain evolution.
机译:颗粒重排控制着颗粒材料在负载下的机械响应。以前对持续剪切带状态进行的宏观应力的全面时间序列分析发现了一个双稳态动力学系统,该动力学系统具有两个相互连接的吸引盆,一个与阻塞相联系,另一个与阻塞相联系。在这里,我们检查3D颗粒材料的局部织物的状态空间,以发现潜在的晶粒重排,从而导致系统切换盆地并表现出宏观准静态动力学。织物状态空间包括根据结构确定性组织的亚稳态吸引子:低静态性,等静性和高静态性。尽管轨迹绝对支持保留本地结构的身份转换,但罕见的非身份转换是流域切换的关键。干扰盆地的动力学受超静力区域中力链过渡的控制:这里多余的约束使得力的重新配置几乎不会改变本地结构。但是随着力链变得超负荷,它们就会弯曲。屈曲和随之而来的膨胀将晶粒推向等静区。反过来,这会触发干扰发生,并随之转移到实体平稳区域,在该区域,响尾蛇虽然很少,但主导着动态。摇铃器为不稳定的未对准颗粒柱提供楔形支撑,从而促进力链的形成并返回至高静区。通过增加接触和/或3个循环在三聚体中对等静压约束晶粒的侧向增强是新生力链演化过程中最可能的非同一性转变。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号