首页> 外文期刊>GPS Solutions >Precision real-time navigation of LEO satellites using global positioning system measurements
【24h】

Precision real-time navigation of LEO satellites using global positioning system measurements

机译:使用全球定位系统测量值对LEO卫星进行精确的实时导航

获取原文
获取原文并翻译 | 示例
           

摘要

Continued advancements in remote sensing technology along with a trend towards highly autonomous spacecraft provide a strong motivation for accurate real-time navigation of satellites in low Earth orbit (LEO). Global Navigation Satellite System (GNSS) sensors nowadays enable a continuous tracking and provide low-noise radiometric measurements onboard a user spacecraft. Following the deactivation of Selective Availability a representative real-time positioning accuracy of 10 m is presently achieved by spaceborne global positioning system (GPS) receivers on LEO satellites. This accuracy can notably be improved by use of dynamic orbit determination techniques. Besides a filtering of measurement noise and other short-term errors, these techniques enable the processing of ambiguous measurements such as carrier phase or code-carrier combinations. In this paper a reference algorithm for real-time onboard orbit determination is described and tested with GPS measurements from various ongoing space missions covering an altitude range of 400–800 km. A trade-off between modeling effort and achievable accuracy is performed, which takes into account the limitations of available onboard processors and the restricted upload capabilities. Furthermore, the benefits of different measurements types and the available real-time ephemeris products are assessed. Using GPS broadcast ephemerides a real-time position accuracy of about 0.5 m (3D rms) is feasible with dual-frequency carrier phase measurements. Slightly inferior results (0.6–1 m) are achieved with single-frequency code-carrier combinations or dual-frequency code. For further performance improvements the use of more accurate real-time GPS ephemeris products is mandatory. By way of example, it is shown that the TDRSS Augmentation Service for Satellites (TASS) offers the potential for 0.1–0.2 m real-time navigation accuracies onboard LEO satellites.
机译:遥感技术的不断发展以及高度自主的航天器的发展趋势为在低地球轨道(LEO)中进行卫星的实时精确导航提供了强大的动力。如今,全球导航卫星系统(GNSS)传感器可实现连续跟踪并在用户航天器上提供低噪声辐射测量。停用“选择性可用性”后,LEO卫星上的星载全球定位系统(GPS)接收器目前可实现10 m的代表性实时定位精度。通过使用动态轨道确定技术,可以显着提高该精度。除了过滤测量噪声和其他短期误差外,这些技术还可以处理模棱两可的测量结果,例如载波相位或代码-载波组合。在本文中,描述了一种参考算法,用于实时机载轨道确定,并通过各种正在进行的,覆盖400-800 km高度范围的太空任务的GPS测量值进行了测试。在建模工作量和可达到的精度之间进行了折衷,考虑了可用板载处理器的局限性和受限制的上载能力。此外,还评估了不同测量类型和可用的实时星历表产品的优势。使用GPS广播星历,通过双频载波相位测量,大约0.5 m(3D rms)的实时位置精度是可行的。单频代码-载波组合或双频代码获得的结果稍差(0.6-1 m)。为了进一步提高性能,必须使用更准确的实时GPS星历表产品。举例说明,TDRSS卫星增强服务(TASS)为LEO卫星提供了0.1–0.2 m实时导航精度的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号