首页> 外文期刊>Global and planetary change >Detrital input and early diagenesis in sediments from Lake Baikal revealed by rock magnetism
【24h】

Detrital input and early diagenesis in sediments from Lake Baikal revealed by rock magnetism

机译:岩石磁性揭示贝加尔湖沉积物中的碎屑输入和早期成岩作用

获取原文
获取原文并翻译 | 示例
           

摘要

A rock magnetic study was performed on sediment cores from six locations in Lake Baikal. For a comprehensive approach of the processes influencing the rock magnetic signal, additional data are presented such as total organic carbon (TOC), total sulphur (TS), opal, water content and relative variations in iron and titanium measured on selected intervals. In glacial sediments, the magnetic signal is dominated by magnetite, which is considered to be of detrital origin. This predominance of magnetite is interrupted by distinct horizons of authigenic greigite, probably confined to reductive microenvironments. In interglacial stages, besides dilution by biogenic silica and a decreasing detrital input, the weakness of the rock magnetic signal is also due to a reductive dissolution of magnetic particles. The magnetic assemblage is strongly linked to the redox history of interglacial sediment. In the oxidised bottom sediments of Lake Baikal, a biogenic magnetite is observed [Peck, J.A., King, J.W., 1996. Magnetofossils in the sediments of lake Baikal, Siberia. Earth Planet. Sci. Lett. 140 (1-4), 159-172]. After burial under the redox front, the magnetite is preferentially dissolved, and detrital hematite remains dominant when the sedimentation rate is low and when the residence time of the magnetite close to the redox boundary is long. During these low sedimentation rate conditions, the redox front is preserved [Granina, L., Mueller, B. and Wehrli, B., 2004. Origin and dynamics of Fe and Mn sedimentary layers in Lake Baikal. Chem. Geol. 205 (1-2), 55-72], At constant sedimentation rate and fast burial, the magnetite is preserved or transformed into greigite when sulphate-reducing conditions are reached in the sediment. In interglacial sediments, the magnetic assemblages depict changes in the sedimentation rate, which are traced using the ratio of magnetite over hematite (S-ratio). At the beginning of interglacials, the sedimentation rate is constant with an assemblage magnetite+greigite (high S-ratio), and at the end of some interglacials, the sedimentation rate decreases with a predominance of hematite (low S-ratio).
机译:对贝加尔湖六个地点的沉积物岩心进行了岩磁研究。对于影响岩石磁信号的过程的综合方法,还提供了其他数据,例如总有机碳(TOC),总硫(TS),蛋白石,水含量以及在选定间隔内测得的铁和钛的相对变化。在冰川沉积物中,磁信号主要由磁铁矿控制,而磁铁矿被认为是有害的。磁铁矿的这种优势被自生的钙铁矿的不同视界打断,可能仅限于还原性微环境。在间冰期,除了被生物成因二氧化硅稀释和减少碎屑输入外,岩石磁信号的弱点还归因于磁性颗粒的还原溶解。磁性组合与冰间沉积物的氧化还原历史密切相关。在贝加尔湖的氧化底部沉积物中,观察到一种生物磁铁矿[Peck,J.A.,King,J.W.,1996.西伯利亚贝加尔湖沉积物中的磁化石。地球行星。科学来吧140(1-4),159-172]。在氧化还原前沿下埋藏后,磁铁矿优先溶解,当沉降速率低且磁铁矿靠近氧化还原边界的时间较长时,碎屑赤铁矿仍占主导地位。在这些低沉积速率条件下,氧化还原锋得以保留[Granina,L.,Mueller,B.和Wehrli,B.,2004。贝加尔湖中Fe和Mn沉积层的成因和动力学。化学地质205(1-2),55-72],在恒定的沉降速率和快速的埋葬条件下,当沉积物中达到减少硫酸盐的条件时,磁铁矿被保存或转变为钙铁矿。在冰间沉积物中,磁性集合体描述了沉积速率的变化,这是利用磁铁矿与赤铁矿的比率(S比率)来追踪的。在夹层间开始时,沉积速度在磁铁矿+钙铁矿的组合下是恒定的(高S比),而在某些夹层间结束时,沉积速度随赤铁矿(S比低)的增加而降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号