...
首页> 外文期刊>Geothermics >Turkish geothermal fields as natural analogues of CO2 storage sites: Gas geochemistry and implications for CO2 trapping mechanisms
【24h】

Turkish geothermal fields as natural analogues of CO2 storage sites: Gas geochemistry and implications for CO2 trapping mechanisms

机译:土耳其地热田作为CO2储存地点的天然类似物:天然气地球化学及其对CO2捕集机制的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The CO2-He gas systematics of Turkish geothermal systems are modeled to compare and quantify various CO2 trapping mechanisms involved in deep aquifers. We utilize data from geothermal fields from three different tectonic provinces of Turkey: North Anatolian Fault Zone (NAFZ), East Anatolian Fault Zone (EAFZ), and western Anatolia. Our modeling approach distinguishes between possible subsurface processes that control CO2 gas contents in the geothermal systems mixing, degassing, dissolution, and calcite precipitation. The approach is predicated on selecting pristine gas compositions, which is achieved by eliminating those samples likely to reflect crust-mantle mixing (via CO2/He-3 vs. R/RA relationships), and shallow-level degassing (via CO2 vs. delta C-13 relationships). Remaining samples are then used to discriminate between dissolution and calcite precipitation processes using delta C-13 vs. CO2/He-3 relationships. Based upon temperature- and pH-dependent fractionation between CO2 and He gases, and carbon isotopes (delta C-13), quantitative estimates from Rayleigh fractionation models suggest dissolution as the major CO2 trapping mechanism, accounting for up to 95% of the variations in gas compositions. Calcite precipitation accompanies dissolution at high temperatures Characteristic of reservoir conditions, and can stabilize up to 80% of the emplaced CO2 in some instances. The relative contribution of calcite precipitation to CO2 stabilization, however, is generally minor (<25%) compared to dissolution (>75%) and appears to change as a complex function of the nature and duration of water-rock interaction along with temperature. As shown by this study, CO2-He systematics provide a promising tool to predict and monitor the behaviour of CO2 in storage systems like geothermal fields which have recently gained interest as prospective storage sites for enhanced geothermal heat recovery projects. (C) 2016 Elsevier Ltd. All rights reserved.
机译:对土耳其地热系统的CO2-He气体系统进行建模,以比较和量化深层含水层中涉及的各种CO2捕集机制。我们利用来自土耳其三个不同构造省份的地热场数据:北安纳托利亚断裂带(NAFZ),东安纳托利亚断裂带(EAFZ)和西安纳托利亚。我们的建模方法区分了可能的地下过程,这些过程控制了地热系统中二氧化碳气体的含量,包括混合,脱气,溶解和方解石沉淀。该方法基于选择原始气体成分的方法,该方法通过消除可能反映出地壳幔混合(通过CO2 / He-3与R / RA的关系)和浅层除气(通过CO2与δ的关系)的样品来实现。 C-13关系)。然后,使用δC-13与CO2 / He-3的关系,将剩余样品用于区分溶解和方解石沉淀过程。根据二氧化碳和氦气之间的温度和pH依赖性分馏以及碳同位素(δC-13),瑞利分馏模型的定量估计表明溶解是主要的CO2捕集机制,占到了95%的变化。气体成分。在高温下,方解石沉淀伴随溶解,这是储层条件的特征,在某些情况下,可稳定高达80%的二氧化碳。然而,与溶解(> 75%)相比,方解石沉淀对CO2稳定的相对贡献通常较小(<25%),并且似乎随着水-岩石相互作用的性质和持续时间以及温度的变化而变化。如本研究所示,CO2-He系统提供了一种有前途的工具,可预测和监测诸如地热田等存储系统中的CO2行为,地热田最近已成为增强地热热回收项目的潜在存储场所而受到关注。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号