...
首页> 外文期刊>Geothermics >Specifying recharge zones and mechanisms of the transitional geothermal field through hydrogen and oxygen isotope analyses with consideration of water-rock interaction
【24h】

Specifying recharge zones and mechanisms of the transitional geothermal field through hydrogen and oxygen isotope analyses with consideration of water-rock interaction

机译:通过考虑水岩相互作用,通过氢气和氧同位素分析来指定过渡地热场的充电区和机制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Recharge mechanism and water-rock interaction (WRI) along the recharge flows in a transitional geothermal system that characterize the chemical and physical properties of vapor and liquid phases, has not yet been fully understood due to complexities of fluid origin and geologic structure. To clarify the fluid origin and WRI processes in the system, this study applied hydrogen and oxygen isotope, B, Cl, and rare alkali metals analyses by considering fractionation characteristics of O-18 in rocks and liquid phases, and correction of delta H-2 and delta O-18 values in the steam composition. The investigation were done by using 20 samples collected from liquid-dominated, vapor-dominated, and two-phase wells in one of transitional reservoir fields in West Java, Indonesia. The isotopic fractionation factors calculated from a single-step steam separation clearly divided the samples into four zones: boiling parent fluid, vapor, condensate fluid, and diluted steam-heated fluid. The parent fluid that has initial Cl- concentration of 10,000 mg/kg and low water-rock ratio of W/R = 0.2 compositions was found to be the most essential part of the recharge system. Recharge mechanism involves meteoric water from the elevation of 1200 m -1300 m a.s.l. infiltrates deeply through NE-SW regional faults, and becomes the parent fluid in the reservoir. The residual fluid after boiling of the parent fluid remains in the liquid reservoir with W/R = 0.2, while the vapor phase forms a parasitic steam cap above the liquid reservoir with 0.2 = W/R = 0.7.
机译:沿着蒸汽和液相的化学和物理性质的过渡地热系统中的再充电机制和水岩相互作用(WRI)在表征蒸汽和液相的化学和物理性质,尚未由于流体来源和地质结构的复杂性而完全理解。为了澄清系统中的流体来源和WRI过程,通过考虑岩石和液相中O-18的分馏特性,并考虑液相的分馏特性,以及Delta H-2的校正,本研究应用氢气和氧同位素,B,Cl和稀有碱金属分析,以及Delta H-2的校正和蒸汽成分中的达达o-18值。通过使用从印度尼西亚西爪哇省西爪哇省的过渡储层领域中的一个从液体主导的,蒸汽支配和两相井收集的20个样品进行的研究。根据单步蒸汽分离计算的同位素分馏因子清楚地将样品分成四个区域:沸腾母体流体,蒸气,缩合液和稀释的蒸汽加热流体。发现具有10,000mg / kg和W / R <= 0.2组合物的初始Cl浓度和低水岩比的亲本液是充电系统中最重要的部分。充电机制涉及从1200 m -1300m A.L的高度的陨石。深入渗透Ne-SW区域断层,并成为水库中的母体液体。液体流体沸腾后的残余流体保留在液体贮存器中,用W / R <= 0.2,而气相在液体贮存器上方形成寄生蒸汽盖,0.2 <= w / R <= 0.7。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号