...
首页> 外文期刊>Geothermics >Inverse modeling of the natural state of geothermal reservoirs using adjoint and direct methods
【24h】

Inverse modeling of the natural state of geothermal reservoirs using adjoint and direct methods

机译:伴随法和直接法对地热储层自然状态的反演

获取原文
获取原文并翻译 | 示例

摘要

The application of the adjoint and direct methods to inverse modeling of the natural state of a convective geothermal system is discussed. The methods have been applied to other subsurface modeling problems, but they have seldom been used in the geothermal context and not at all for high-enthalpy, two-phase systems.There are two important features of the natural state problem that make it an interesting challenge for inverse modeling. The first is that good downhole temperature measurements are typically available from 1 to 2 km deep wells, scattered over a large area of the geothermal system. Secondly, the geological structure of the system controls how the convective plume develops over geological time and thus downhole temperatures can be used to infer the large-scale permeability distribution. This interaction of large-scale, heat induced convection and geological structure determines the size and shape of hot geothermal systems and makes inverse modeling of their natural state particularly useful, no matter what method is used.Another important issue with natural state geothermal modeling is the challenge of the computational task involved. Most previous inverse modeling studies of the natural state of high-enthalpy geothermal reservoirs have used the derivative-based Levenberg-Marquardt method with derivatives of model outputs evaluated by finite differences. This is a very time-consuming process since many lengthy forward simulations of a transient approach to the steady natural state are required. In the present study adjoint and direct methods are used for the efficient evaluation of derivatives and prove to be very effective.A synthetic two-dimensional vertical slice model is used to test the applicability of the adjoint and direct methods. The results show that the methods offer much faster inversions compared to those based on finite differencing.
机译:讨论了伴随和直接方法在对流地热系统自然状态反演中的应用。该方法已应用于其他地下建模问题,但很少在地热环境中使用,甚至根本没有用于高焓两相系统。自然状态问题有两个重要特征,这使其成为一个有趣的问题。逆建模的挑战。首先是通常可以在1至2 km深的井中获得良好的井下温度测量结果,这些井散布在地热系统的大面积区域中。其次,系统的地质结构控制着对流羽流如何随地质时间发展,因此井下温度可用于推断大规模渗透率分布。无论是采用哪种方法,大规模的热对流和地质结构之间的相互作用决定了热地热系统的大小和形状,并使其自然状态的逆向建模特别有用,无论采用哪种方法。挑战所涉及的计算任务。先前有关高焓地热储层自然状态的大多数逆模型研究都使用基于导数的Levenberg-Marquardt方法,并通过有限差分评估模型输出的导数。这是一个非常耗时的过程,因为需要对稳态自然状态的瞬态方法进行许多冗长的正向仿真。本研究采用伴随和直接方法对导数进行有效评估,证明是非常有效的。本文采用合成的二维垂直切片模型测试了伴随和直接方法的适用性。结果表明,与基于有限差分的方法相比,该方法具有更快的反演速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号