首页> 外文期刊>Geotechnique >How water retention in fractal soils depends on particle and pore sizes, shapes, volumes and surface areas
【24h】

How water retention in fractal soils depends on particle and pore sizes, shapes, volumes and surface areas

机译:分形土壤中的保水量如何取决于颗粒和孔径,形状,体积和表面积

获取原文
获取原文并翻译 | 示例
       

摘要

Water retention in soils as a function of suction is important in many disciplines, including engineering when assessing soil strength in infrastructure, and land management, agriculture and eco-hydrology. Water retention is described mathematically using a soil-water characteristic curve (SWCC), and many equations have been proposed which link degree of saturation, suction and voids ratio. They are empirical and phenomenological in origin, rarely incorporate both the particle size distribution and a description of pore geometry, and may not be valid for a soil in which pore surface area must remain constant and equal to particle surface area. Here, focusing on fractal soils, by setting particle and pore surface areas equal and constant, analytical derivations are presented linking all parameters defining SWCCs to particle and pore geometry information, size distributions, shapes, volumes and surface areas. Descriptions of how pore shapes and volumes depend on voids ratio are incorporated. The derivations show two key parameters, the air entry value and air expulsion value, are linked to the voids ratio in power laws, giving theoretical justification to what is observed in experiments. The power exponent is the fractal dimension of the particle size distribution. The voids ratio dependent SWCCs provide very good fits to data for six soils. This discovery means that a SWCC for a single voids ratio can be made applicable to any other voids ratio using just the particle size distribution. It is anticipated that extending these ideas to non-fractal soils may involve replacing the fractal size distributions with size distributions of other mathematical forms to capture size, shape, volume and surface area dependencies.
机译:在许多学科中,土壤吸水率是吸力的函数,这很重要,包括在评估基础设施的土壤强度以及土地管理,农业和生态水文学时的工程学。使用土壤-水特征曲线(SWCC)在数学上描述保水率,并提出了许多方程,这些方程将饱和度,吸力和空隙率联系起来。它们的起源是经验和现象学的,很少同时包含粒度分布和对孔隙几何形状的描述,并且对于其中孔隙表面积必须保持恒定且等于粒子表面积的土壤可能无效。在这里,着眼于分形土壤,通过将粒子和孔隙的表面积设置为相等和恒定,将所有定义SWCC的参数与粒子和孔隙的几何信息,尺寸分布,形状,体积和表面积联系起来,进行分析推导。结合了孔隙形状和体积如何取决于空隙率的描述。推导显示出两个关键参数,空气进入值和空气排出值,与幂律中的空隙率相关,从而为实验中观察到的结果提供了理论上的证明。幂指数是粒度分布的分形维数。取决于孔隙率的SWCC为六种土壤的数据提供了很好的拟合度。该发现意味着仅使用粒度分布就可以使单个空隙率的SWCC适用于任何其他空隙率。可以预期,将这些思想扩展到非分形土壤中可能涉及用其他数学形式的尺寸分布代替分形尺寸分布,以捕获尺寸,形状,体积和表面积的依赖性。

著录项

  • 来源
    《Geotechnique》 |2014年第5期|379-390|共12页
  • 作者

    A. R. RUSSELL;

  • 作者单位

    Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    fractals; partial saturation; suction;

    机译:分形部分饱和;吸力;
  • 入库时间 2022-08-18 00:12:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号