首页> 外文期刊>Geotechnique >The interplay between anisotropy and strain localisation in granular soils: a multiscale insight
【24h】

The interplay between anisotropy and strain localisation in granular soils: a multiscale insight

机译:粒状土壤中各向异性与应变局部化之间的相互作用:多尺度分析

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a multiscale investigation on the interplay among inherent anisotropy, fabric evolution and strain localisation in granular soils, based on a hierarchical multiscale framework with rigorous coupling of the finite-element method (FEM) and discrete-element method (DEM). DEM assemblies with elongated particles are generated to simulate inherent anisotropy and are embedded to the Gauss points of the FEM mesh to derive the required constitutive relation. Specimens prepared with different bedding plane angles are subjected to biaxial shear under either smooth or rough loading platens. Key factors and physical mechanisms contributing towards the occurrence and development of strain localisation are examined. The competing evolutions of two sources of anisotropy, one related to particle orientations and the other related to contact normals, are found to underpin the development of the shear band. A single band pattern is observed under smooth boundary conditions, and its orientation relative to the bedding plane depends critically on the relative dominance between the two anisotropies. Under rough boundary conditions, the non-coaxial material response and the boundary constraint jointly lead to cross-shaped double shear bands. The multiscale simulations indicate that the DEM assemblies inside the shear band(s) undergo extensive shearing, fabric evolution and particle rotation, and may reach the critical state, while those located outside the shear band(s) experience mild loading followed by unloading. The particle-orientation-based fabric anisotropy needs significantly larger shear and dilation for mobilisation than the contact-normal based one. The asynchrony in evolution of the two fabric anisotropies can cause non-coaxial responses for initially coaxial packings, which directly triggers strain localisation.
机译:本文基于有限元法(FEM)和离散元法(DEM)的严格耦合的分层多尺度框架,对粒状土壤固有各向异性,织物演化和应变局部化之间的相互作用进行了多尺度研究。生成带有细长粒子的DEM组件以模拟固有的各向异性,并将其嵌入FEM网格的高斯点,以得出所需的本构关系。以不同的垫料平面角度制备的样品在光滑或粗糙的压盘下都要经受双轴剪切。研究了导致应变局部化发生和发展的关键因素和物理机制。发现两种各向异性的竞争演化,一种与粒子取向有关,另一种与接触法线有关,这是剪切带发展的基础。在平滑边界条件下可以观察到一个单带模式,其相对于层理平面的方向严格取决于两个各向异性之间的相对优势。在粗糙的边界条件下,非同轴材料响应和边界约束共同导致形成十字形双剪切带。多尺度模拟表明,剪切带内的DEM组件经历了广泛的剪切,织物演变和颗粒旋转,并可能达到临界状态,而位于剪切带外的那些DEM组件则经历了轻度加载,然后卸载。与基于接触法向的织物各向异性相比,基于颗粒取向的织物各向异性需要更大的剪切力和扩张力。两种织物各向异性的演化过程中的异步性可能导致最初同轴填充的非同轴响应,从而直接触发应变局部化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号