首页> 外文期刊>Geophysics >Robust and efficient upwind finite-difference traveltime calculations in three dimensions
【24h】

Robust and efficient upwind finite-difference traveltime calculations in three dimensions

机译:三维高效稳健的迎风有限差分行程时间计算

获取原文
获取原文并翻译 | 示例
       

摘要

First-arrival traveltimes in complicated 3-D geologic media may be computed robustly and efficiently using an upwind finite-difference solution of the 3-D eikonal equation. An important application of this technique is computing traveltimes for imaging seismic data with 3-D prestack Kirchhoff depth migration. The method performs radial extrapolation of the three components of the slowness vector in spherical coordinates. Traveltimes are computed by numerically integrating the radial component of the slowness vector. The original finite-difference equations are recast into unitless forms that are more stable to numerical errors. A stability condition adaptively determines the radial steps that are used to extrapolate. Computations are done in a rotated spherical coordinate system that places the small arc-length regions of the spherical grid at the earth's surface (z = 0 plane). This improves efficiency by placing large grid cells in the central regions of the grid where wavefields are complicated, thereby maximizing the radial steps. Adaptive gridding allows the angular grid spacings to vary with radius. The computation grid is also adaptively truncated so that it does not extend beyond the predefined Cartesian traveltime grid. This grid handling improves efficiency. The method cannot compute traveltimes corresponding to wavefronts that have "turned" so that they propagate in the negative radial direction. Such wavefronts usually represent headwaves and are not needed to image seismic data. An adaptive angular normalization prevents this turning, while allowing lower-angle wavefront components to accurately propagate. This upwind finite-difference method is optimal for vector-parallel supercomputers, such as the CRAY Y-MP. A complicated velocity model that generates turned wavefronts is used to demonstrate the meth-od's accuracy by comparing with results that were generated by 3-D ray tracing and by an alternate traveltime calculation method. This upwind method has also proven successful in the 3-D presta Kirchhoff depth migration of field data.
机译:使用3-D方程方程的迎风有限差分解,可以鲁棒而有效地计算出复杂的3-D地质介质中的首次到达时间。该技术的重要应用是利用3-D叠前基尔霍夫深度偏移计算地震数据成像的传播时间。该方法对球面坐标系中的慢度矢量的三个分量进行径向外推。通过数值积分慢度矢量的径向分量来计算行程时间。原始的有限差分方程被重铸成对数值误差更稳定的无单位形式。稳定性条件自适应地确定用于推断的径向步长。计算是在旋转的球坐标系中完成的,该系统将球状网格的较小弧长区域放置在地球表面(z = 0平面)上。通过在波场复杂的网格中心区域放置大型网格单元,从而提高了效率,从而最大程度地提高了径向步长。自适应网格化允许角度网格间距随半径变化。计算网格也被自适应地截断,以使其不会超出预定义的笛卡尔行进时间网格。这种网格处理提高了效率。该方法无法计算与“已转向”的波前相对应的传播时间,以使它们在负径向方向上传播。这样的波前通常代表头波,不需要为地震数据成像。自适应角度归一化可防止这种转向,同时允许小角度波阵面分量准确传播。这种迎风有限差分方法最适合矢量并行超级计算机,例如CRAY Y-MP。通过与通过3-D射线追踪和替代的行进时间计算方法生成的结果进行比较,使用了一个复杂的速度模型来生成方法,该模型会产生转向的波前,以证明方法的准确性。这种上风方法还被证明在野外数据的3-D presta Kirchhoff深度偏移中是成功的。

著录项

  • 来源
    《Geophysics》 |1995年第4期|p.1108-1117|共10页
  • 作者

    William A. Schneider Jr.;

  • 作者单位

    Exxon Production Research Company, P.O. Box 2189, Houston, TX 77252-2189;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;
  • 关键词

  • 入库时间 2022-08-18 00:20:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号