首页> 外文期刊>Geophysical Prospecting >Seismic attenuation and velocity dispersion in fractured rocks: The role played by fracture contact areas
【24h】

Seismic attenuation and velocity dispersion in fractured rocks: The role played by fracture contact areas

机译:裂隙岩石中的地震衰减和速度弥散:裂隙接触面的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The presence of fractures in fluid-saturated porous rocks is usually associated with strong seismic P-wave attenuation and velocity dispersion. This energy dissipation can be caused by oscillatory wave-induced fluid pressure diffusion between the fractures and the host rock, an intrinsic attenuation mechanism generally referred to as wave-induced fluid flow. Geological observations suggest that fracture surfaces are highly irregular at the millimetre and sub-millimetre scale, which finds its expression in geometrical and mechanical complexities of the contact area between the fracture faces. It is well known that contact areas strongly affect the overall mechanical fracture properties. However, existing models for seismic attenuation and velocity dispersion in fractured rocks neglect this complexity. In this work, we explore the effects of fracture contact areas on seismic P-wave attenuation and velocity dispersion using oscillatory relaxation simulations based on quasi-static poroelastic equations. We verify that the geometrical and mechanical details of fracture contact areas have a strong impact on seismic signatures. In addition, our numerical approach allows us to quantify the vertical solid displacement jump across fractures, the key quantity in the linear slip theory. We find that the displacement jump is strongly affected by the geometrical details of the fracture contact area and, due to the oscillatory fluid pressure diffusion process, is complex-valued and frequency-dependent. By using laboratory measurements of stress-induced changes in the fracture contact area, we relate seismic attenuation and dispersion to the effective stress. The corresponding results do indeed indicate that seismic attenuation and phase velocity may constitute useful attributes to constrain the effective stress. Alternatively, knowledge of the effective stress may help to identify the regions in which wave induced fluid flow is expected to be the dominant attenuation mechanism.
机译:流体饱和多孔岩石中裂缝的存在通常与强烈的地震纵波衰减和速度色散有关。这种能量耗散可能是由裂缝和基质之间的振荡波引起的流体压力扩散引起的,这种固有的衰减机制通常称为波引起的流体流动。地质观察表明,断裂面在毫米和亚毫米尺度上高度不规则,这在断裂面之间的接触区域的几何和机械复杂性中得到表达。众所周知,接触面积会严重影响整体机械断裂性能。但是,现有的裂隙岩石中地震衰减和速度扩散的模型忽略了这种复杂性。在这项工作中,我们使用基于准静态孔隙弹性方程的振荡弛豫模拟,探讨了裂缝接触区域对地震P波衰减和速度色散的影响。我们验证了裂缝接触区域的几何和机械细节对地震信号具有强烈影响。此外,我们的数值方法使我们能够量化跨裂缝的垂直固体位移跃变,这是线性滑动理论中的关键量。我们发现,位移跃变受到裂缝接触区域的几何细节的强烈影响,并且由于振荡流体压力扩散过程,它是复数值且与频率相关的。通过使用实验室测量的裂缝接触区域中应力引起的变化,我们将地震衰减和色散与有效应力相关联。相应的结果确实表明,地震衰减和相速度可能构成限制有效应力的有用属性。可替代地,有效应力的知识可以帮助识别预期波浪引起的流体流动是主要衰减机制的区域。

著录项

  • 来源
    《Geophysical Prospecting》 |2014年第6期|1278-1296|共19页
  • 作者单位

    Applied and Environmental Geophysics Group, University of Lausanne, CH-1015 Lausanne, Switzerland;

    Mineral Resources Flagship, Commonwealth Scientific and Industrial Research Organization, Perth, Australia;

    Applied and Environmental Geophysics Group, University of Lausanne, CH-1015 Lausanne, Switzerland;

    Applied and Environmental Geophysics Group, University of Lausanne, CH-1015 Lausanne, Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Acoustics; Attenuation; Rock physics;

    机译:声学;衰减;岩石物理学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号