首页> 外文期刊>Geophysical Prospecting >Application of the 3D common-reflection-surface stack workflow in a crystalline rock environment
【24h】

Application of the 3D common-reflection-surface stack workflow in a crystalline rock environment

机译:3D共反射面堆栈工作流程在晶体环境中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Seismic data from crystalline or hardrock environments usually exhibit a poor signal-to-noise ratio due to low impedance contrasts in the subsurface. Moreover, instead of continuous reflections, we observe a lot of steeply dipping events resembling parts of diffractions. The conventional seismic processing (common midpoint stack and dip moveout) is not ideally suited for imaging such type of data. Common-reflection-surface stack processing considers more traces during the stack than common midpoint processing, and the resulting image displays a better signal-to-noise ratio. In the last decade, the common-reflection-surface stack method was established as a powerful tool to provide improved images, especially for low-fold or noise-contaminated data. The common-reflection-surface stack and all attributes linked to it are obtained using a coherence-based automatic data-driven optimization procedure. In this work we applied the common-reflection-surface stack workflow to 3D crystalline rock seismic data, which were acquired near Schneeberg, Germany, for geothermal exploration. The common-reflection-surface stack itself provided an image of good signal-to-noise ratio. However, for data from environments with low acoustic impedance and poor velocity information, coherence, which is automatically obtained in the optimization procedure, provides an alternative way to image the subsurface. Despite the reduced resolution, for these data, the coherence image provided the best results for an initial analysis. Utilized as a weight, the coherence attribute can be used to further improve the quality of the stack. By combining the benefits of a decreased noise level with the high-resolution and high-interference properties of waveforms, we argue that these results may provide the best images in an entirely data-driven processing workflow for the Schneeberg data.
机译:由于地下的低阻抗对比,来自晶体或硬岩环境的地震数据通常显示出较差的信噪比。此外,我们观察到许多陡峭的下降事件,而不是连续的反射,类似于衍射的一部分。传统的地震处理(常见的中点叠加和倾角偏移)不适用于成像此类数据。与普通中点处理相比,共反射面堆栈处理在堆栈过程中考虑的迹线更多,因此生成的图像显示出更好的信噪比。在过去的十年中,共反射表面堆叠方法被认为是提供改进图像的强大工具,尤其是对于低倍或受噪声污染的数据。使用基于相干性的自动数据驱动的优化过程,可以获取公共反射面堆栈及其所有相关属性。在这项工作中,我们将共反射面堆栈工作流程应用于3D晶体岩石地震数据,该数据是在德国Schneeberg附近采集的,用于地热勘探。共反射表面叠层本身提供了具有良好信噪比的图像。但是,对于来自声阻抗低和速度信息差的环境的数据,在优化过程中自动获得的相干性提供了对地下表面进行成像的另一种方法。尽管分辨率降低,但对于这些数据,相干图像仍可为初始分析提供最佳结果。相干属性可以用作权重,以进一步提高堆栈的质量。通过将降低噪声水平的好处与波形的高分辨率和高干扰特性相结合,我们认为这些结果可能在针对Schneeberg数据的完全数据驱动的处理工作流程中提供最佳图像。

著录项

  • 来源
    《Geophysical Prospecting》 |2015年第4期|990-998|共9页
  • 作者单位

    Univ Hamburg, D-20146 Hamburg, Germany;

    Univ Hamburg, D-20146 Hamburg, Germany;

    Univ Hamburg, D-20146 Hamburg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号