首页> 外文期刊>Geophysical Prospecting >1D elastic full-waveform inversion and uncertainty estimation by means of a hybrid genetic algorithm-Gibbs sampler approach
【24h】

1D elastic full-waveform inversion and uncertainty estimation by means of a hybrid genetic algorithm-Gibbs sampler approach

机译:混合遗传算法-Gibbs采样器方法对一维弹性全波形反演和不确定度估计

获取原文
获取原文并翻译 | 示例
           

摘要

Stochastic optimization methods, such as genetic algorithms, search for the global minimum of the misfit function within a given parameter range and do not require any calculation of the gradients of the misfit surfaces. More importantly, these methods collect a series of models and associated likelihoods that can be used to estimate the posterior probability distribution. However, because genetic algorithms are not a Markov chain Monte Carlo method, the direct use of the genetic-algorithm-sampled models and their associated likelihoods produce a biased estimation of the posterior probability distribution. In contrast, Markov chain Monte Carlo methods, such as the Metropolis-Hastings and Gibbs sampler, provide accurate posterior probability distributions but at considerable computational cost. In this paper, we use a hybrid method that combines the speed of a genetic algorithm to find an optimal solution and the accuracy of a Gibbs sampler to obtain a reliable estimation of the posterior probability distributions. First, we test this method on an analytical function and show that the genetic algorithm method cannot recover the true probability distributions and that it tends to underestimate the true uncertainties. Conversely, combining the genetic algorithm optimization with a Gibbs sampler step enables us to recover the true posterior probability distributions. Then, we demonstrate the applicability of this hybrid method by performing one-dimensional elastic full-waveform inversions on synthetic and field data. We also discuss how an appropriate genetic algorithm implementation is essential to attenuate the "genetic drift" effect and to maximize the exploration of the model space. In fact, a wide and efficient exploration of the model space is important not only to avoid entrapment in local minima during the genetic algorithm optimization but also to ensure a reliable estimation of the posterior probability distributions in the subsequent Gibbs sampler step.
机译:随机优化方法(例如遗传算法)可在给定参数范围内搜索失配函数的全局最小值,而无需对失配曲面的梯度进行任何计算。更重要的是,这些方法收集了可用于估计后验概率分布的一系列模型和相关可能性。但是,由于遗传算法不是马尔可夫链蒙特卡罗方法,因此直接使用遗传算法采样模型及其相关的可能性会产生后验概率分布的偏差估计。相反,马尔可夫链蒙特卡罗方法(例如Metropolis-Hastings和Gibbs采样器)提供了准确的后验概率分布,但计算量却很大。在本文中,我们使用一种混合方法,该方法结合了遗传算法的速度来找到最优解和吉布斯采样器的精度,以获得对后验概率分布的可靠估计。首先,我们在解析函数上测试该方法,并证明遗传算法方法无法恢复真实的概率分布,并且倾向于低估真实的不确定性。相反,将遗传算法优化与Gibbs采样器步骤结合起来可以使我们恢复真实的后验概率分布。然后,我们通过对合成和现场数据执行一维弹性全波形反演来证明这种混合方法的适用性。我们还将讨论适当的遗传算法实现对于减弱“遗传漂移”效应和最大化模型空间探索至关重要。实际上,对模型空间的广泛而有效的探索不仅对于避免遗传算法优化过程中陷入局部极小值很重要,而且对于确保在随后的Gibbs采样器步骤中可靠地估计后验概率分布也很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号