首页> 外文期刊>Fusion Engineering and Design >Thermo-mechanical analysis of a DEMO divertor cooling finger under the EFREMOV test conditions
【24h】

Thermo-mechanical analysis of a DEMO divertor cooling finger under the EFREMOV test conditions

机译:EFREMOV测试条件下的DEMO偏滤器冷却指的热机械分析

获取原文
获取原文并翻译 | 示例
       

摘要

A divertor component of the forthcoming DEMO fusion reactor should be able to withstand heat flux loads larger than 10 MW/m~2. Successful design should withstand high flux loads for a number of load cycles since initially the DEMO reactor is expected to operate in a non-steady-state mode. Computations for evaluating the structural response of the divertor published so far have, however, been based on the stationary approach. A combined computational fluid dynamics and structural model for evaluating the structural response of a divertor under the non-stationary load conditions is therefore developed in this work. Heat transfer coefficients between the helium and inner surface of the thimble are calculated first by solving the helium steady-state flow equations. Spatially distributed heat transfer coefficients are then used as a boundary condition in a non-stationary thermo-mechanical analysis of the divertor. This analysis is performed for a number of load cycles under different surface heat flux levels. The model is validated against the EFREMOV test experimental conditions, designed to be close to reactor operation conditions. Good agreement of the highest temperatures on the tile's top surface with the experimental data is obtained. The results suggest that there are three critical regions in the design where damage could initialize: (a) the thimble's inner surface with the highest thermal gradients, (b) the tile's outer surface and (c) the filler layer of the brazed tile-thimble joint where the temperature is higher than permissible. Post-examination data of experimental specimen confirm these conclusions as cracks were observed in the above mentioned areas (a) and (b), while melting of the layer (c) was also observed.
机译:即将到来的DEMO聚变反应堆的分流器组件应能够承受大于10 MW / m〜2的热通量负荷。成功的设计应在多个负载循环中承受高通量负载,因为最初预计DEMO反应堆将以非稳态模式运行。迄今为止,用于评估偏滤器结构响应的计算均基于固定方法。因此,在这项工作中,开发了一种组合的计算流体动力学和结构模型,用于评估非稳态载荷条件下的分流器的结构响应。首先通过求解氦气稳态流方程,计算出氦气和套管内表面之间的传热系数。然后,将空间分布的传热系数用作分流器的非稳态热力学分析的边界条件。针对不同表面热通量水平下的多个负载循环执行此分析。该模型针对EFREMOV测试实验条件进行了验证,该条件被设计为接近反应堆运行条件。获得了瓷砖顶部表面的最高温度与实验数据的良好一致性。结果表明,设计中存在三个可能引发损坏的关键区域:(a)顶针的内表面具有最高的热梯度,(b)瓷砖的外表面和(c)钎焊瓷砖-顶针的填充层温度高于允许范围的接头。实验样品的检查后数据证实了这些结论,因为在上述区域(a)和(b)中观察到了裂纹,同时还观察到了层(c)的熔化。

著录项

  • 来源
    《Fusion Engineering and Design》 |2010年第1期|P.130-137|共8页
  • 作者单位

    Jozef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia;

    rnJozef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia;

    rnJozef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号