首页> 外文期刊>Fusion Engineering and Design >Production of Cu/diamond composites for first-wall heat sinks
【24h】

Production of Cu/diamond composites for first-wall heat sinks

机译:生产用于第一壁散热器的铜/金刚石复合材料

获取原文
获取原文并翻译 | 示例
       

摘要

Due to their suitable thermal conductivity and strength, copper-based materials have been considered appropriate heat sinks for first wall panels in nuclear fusion devices. However, increased thermal conductivity and mechanical strength are demanded and the concept of property tailoring involved in the design of metal matrix composites advocates for the potential of nanodiamond dispersions in copper. Copper-nanodiamond composite materials can be produced by mechanical alloying followed by a consolidation operation. Yet, this powder metallurgy route poses several challenges: nanodiamond presents intrinsically difficult bonding with copper; contamination by milling media must be closely monitored; and full densification and microstructural homogeneity should be obtained with consolidation. The present line of work is aimed at an optimization of the processing conditions of Cu-nanodiamond composites. The challenges mentioned above have been addressed, respectively, by incorporating chromium in the matrix to form a stable carbide interlayer binding the two components; by assessing the contamination originating from the milling operation through particle-induced X-ray emission spectroscopy; and by comparing the densification obtained by spark plasma sintering with hot-extrusion data from previous studies.
机译:由于其合适的导热性和强度,铜基材料被认为是核聚变设备中第一块壁板的合适散热器。但是,需要提高导热性和机械强度,并且金属基复合材料设计中涉及的性能定制概念提倡在铜中使用纳米金刚石分散体。铜-纳米金刚石复合材料可以通过机械合金化然后进行固结操作来生产。然而,这种粉末冶金路线提出了若干挑战:纳米金刚石本质上难以与铜结合。必须密切监测研磨介质的污染;固结应获得完全的致密化和微观结构的均匀性。当前的工作旨在优化铜纳米金刚石复合材料的加工条件。通过将铬掺入基体中以形成结合两种成分的稳定的碳化物中间层,分别解决了上述挑战。通过颗粒诱导的X射线发射光谱法评估源自铣削操作的污染;并通过比较火花等离子体烧结获得的致密化与先前研究的热挤压数据。

著录项

  • 来源
    《Fusion Engineering and Design》 |2011年第11期|p.2589-2592|共4页
  • 作者单位

    Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal,LNEC, Estrada do Paco do Lumiar, 1649-038 Lisboa, Portugal;

    LNEC, Estrada do Paco do Lumiar, 1649-038 Lisboa, Portugal;

    Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal,ICEMS, Departamente de Engenharia de Materials, Institute Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;

    LNEC, Estrada do Paco do Lumiar, 1649-038 Lisboa, Portugal;

    Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;

    Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;

    ITN, Institute Tecnoldgico e Nuclear, Estrada Nadonal 10,2686-953 Sacavem, Portugal;

    National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan;

    NanoCarbon Research Institute, AREC, Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    copper; nanodiamond; interface reinforcement; carbide formation; spark plasma sintering;

    机译:铜;纳米金刚石界面加固;碳化物形成火花等离子体烧结;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号