...
首页> 外文期刊>Fusion Engineering and Design >Theoretical simulation of thermal behavior in transient heat loads testing of plasma-facing materials
【24h】

Theoretical simulation of thermal behavior in transient heat loads testing of plasma-facing materials

机译:等离子体材料瞬态热负荷测试中热行为的理论模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

High heat flux test facilities throughout the world performed transient heat loads testing to assess the efficiency and fatigue life of a variety of plasma-facing materials and design concepts. However, the penetration depth of the energetic particles is known to have a strong influence on the results of transient heating tests since the temperature is not in equilibrium when failures or significant events occur. Therefore we have developed a numerical approach to quantitatively investigate the thermal behavior in transient heat loads testing of plasma-facing materials. The approach is mainly based on the Monte Carlo method to simulate the trajectories of particles and the classical heat transfer model to calculate the temperature distribution inside a solid, which allows us to calculate the energy deposition distributions and the fraction of incident electron energy deposited (or the ratios of absorbed power density vs. the incident power density) in thermal materials for fusion reactor applications. In particular, the temperature distributions of plasma-facing materials of Be and W under different conditions (acceleration voltage, absorbed power density, duration time and category of material) are studied within this framework. The volumetric heating effect to the surface temperature of materials is much stronger for the low-Z materials like Be than for the high-Z materials like W, where the deviation of surface temperatures between different acceleration voltages can be up to 20% for low-Z materials. The framework of numerically simulating the mechanics for high heat flux testing of plasma-facing materials has been coded as the IRadMat package.
机译:全世界的高热通量测试设施都进行了瞬态热负荷测试,以评估各种等离子表面材料和设计概念的效率和疲劳寿命。然而,已知高能粒子的渗透深度对瞬态加热测试的结果有很大的影响,因为当发生故障或重大事件时温度不会达到平衡。因此,我们开发了一种数值方法来定量研究等离子材料瞬态热负荷测试中的热行为。该方法主要基于蒙特卡罗方法来模拟粒子的轨迹,并基于经典的传热模型来计算固体内部的温度分布,这使我们能够计算能量沉积分布和沉积的入射电子能量的分数(或聚变堆应用的热材料中的吸收功率密度与入射功率密度之比)。特别是,在此框架内研究了Be和W的面向等离子体的材料在不同条件下的温度分布(加速电压,吸收功率密度,持续时间和材料类别)。像Be这样的低Z材料的体积加热对材料表面温度的影响要比像W这样的高Z材料的体积加热效果强得多,在低Z材料中,不同加速电压之间的表面温度偏差可以高达20%。 Z材质。对面向等离子体的材料进行高热通量测试的数值模拟机制的框架已编码为IRadMat软件包。

著录项

  • 来源
    《Fusion Engineering and Design》 |2011年第12期|p.2812-2820|共9页
  • 作者单位

    Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;

    Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;

    Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;

    Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;

    Department of Physics, University of Science and Technology Beijing, Beijing 100083, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    plasma-facing materials; transient heat loads; high heat flux testing; energy deposition; heat transfer; volumetric heating;

    机译:等离子材料;瞬态热负荷;高热通量测试;能量沉积传播热量;容积加热;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号