首页> 外文期刊>Fusion Engineering and Design >Activation product transport using TRACT: ORE estimation of an ITER cooling loop
【24h】

Activation product transport using TRACT: ORE estimation of an ITER cooling loop

机译:使用TRACT的活化产物运输:ITER冷却回路的ORE估算

获取原文
获取原文并翻译 | 示例
       

摘要

The gradual activation of the primary cooling loops with time in fusion power stations and experimental devices is one of the key safety and environmental issues. The time-dependent activation transport and deposition code transport of activation (TRACT) was developed and is used to predict the behaviour of soluble ions, crud particles and the resu1ting activity levels. Example calculations involve the transport of activation products in the Limiter--Out- board baffle cooling loop of ITER. Using time and temperature dependent experimental corrosion rate data calculations predict that the mobilised material of 3.75 kg in the loop is lower than the 8--l0 kg originally predicted in previous studies, resulting in low levels of deposited activity : 2 x l0~8 Bq,/m~2 in-flux, as compared to 5 x l0~10 Bq/m~2, and 2 x l0~4 Bq/m~2 out-of flux, as compared to 6 x l0~9 Bq,/m~2. The active material in the loop after l.2 years of operation is shown to be entirely due to soluble species rather than 'crud'. Dose calculations, using activation product results based on larger than anticipated corrosion rates, show that during plant operation the contact dose is 63 200 mSv/year, the l m away dose is 1 l 300 mSv/year, and both are entirely due to the active nuclides in the coolant. After shutdown there is a rapid decrease in dose and after 8 days doses are l84 mSv/year (contact) and 43.5 mSv/year (l m away), and are entirely due to the long-lived nuclides. However, estimation of the dose for the corrosion rates considered as more likely to be representative of the ITER cooling loop gives a total contact dose of 0.23 mSv./year for times greater than 8 days after shutdown. This dose level is considered negligible when compared to the annual permissible worker dose of 20 mSv,/year, and would be acceptable under current nuclear plant licensing requirements.
机译:随着时间的推移,聚变电站和实验装置中主要冷却回路的逐渐启动是关键的安全和环境问题。开发了随时间变化的激活传输和激活的沉积代码传输(TRACT),用于预测可溶性离子,粗粒的行为和恢复活性水平。计算示例包括在ITER的Limiter-Out-board挡板冷却回路中传输活化产物。使用与时间和温度相关的实验腐蚀速率数据计算,预测回路中的动量材料为3.75 kg,低于先前研究中最初预测的8-l0 kg,从而导致较低的沉积活性:2 x l0〜8 Bq ,/ m〜2流入,相比于5 x l0〜10 Bq / m〜2,和2 x l0〜4 Bq / m〜2流出,相比于6 x l0〜9 Bq,/ m〜2运行1.2年后,回路中的活性物质显示完全是由于可溶性物质而不是“残渣”造成的。使用大于预期腐蚀速率的活化产物结果进行剂量计算,结果表明,在工厂运行期间,接触剂量为63 200 mSv /年,lm离开剂量为1 l 300 mSv /年,这两者都是由于活性物质冷却液中的核素。关闭后,剂量迅速下降,并且在8天后,剂量为1884 mSv /年(接触)和43.5 mSv /年(1 m远),这完全归因于长寿命核素。但是,对于被认为更可能代表ITER冷却回路的腐蚀速率的剂量估算,在停机后大于8天的时间内,总接触剂量为0.23 mSv./年。与每年20 mSv /年的年度允许工人剂量相比,该剂量水平被认为是微不足道的,并且在当前的核电站许可要求下是可以接受的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号