...
首页> 外文期刊>Fuel >Factors influencing the ignition of flames from air-fired swirl pf burners retrofitted to oxy-fuel
【24h】

Factors influencing the ignition of flames from air-fired swirl pf burners retrofitted to oxy-fuel

机译:空气涡流pf燃烧器改装为含氧燃料时影响火焰着火的因素

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Combustion tests were undertaken in a vertical pilot-scale furnace (1.2 MWt) at the IHI test facility in Aioi, Japan, to compare the performance of an air fired swirl burner retrofitted to oxy fired pf coal combustion with the oxy fired feed conditions established to match the furnace heat transfer for the air fired case. A turn down test at a reduced load was also conducted to study the impact on flame stability and furnace performance. Experimental results include gas temperature measurements using pyrometry to infer the ignition location of the flames, flue gas composition analysis, and residence time and carbon burnout. Theoretical computational fluid dynamics (CFD) modelling studies using the Fluent 6.2 code were made to infer mechanisms for flame ignition changes. Previous research has identified that differences in the gas compositions of air and oxy systems increase particle ignition times and reduce flame propagation velocity in laminar systems. The current study also suggests changes in jet aerodynamics, due to burner primary and secondary velocity differences (and hence the momentum flux ratio of the flows) also influence flame shape and type. For the oxy fuel retrofit considered, the higher momentum flux of the primary stream of the oxy-fuel burner causes the predicted ignition to be delayed and occur further distant from the burner nozzle, with the difference being accentuated at low load. However, the study was limited to experimental flames being all Type-0 flow swirl with no internal recirculation), and therefore future work consider higher swirl flames (with internal recirculation) more common in industry.
机译:燃烧试验是在位于日本相生市的IHI测试设施的立式中试炉(1.2 MWt)中进行的,目的是将改装为氧燃烧pf煤的空气涡流燃烧器的燃烧性能与确定的氧燃烧进料条件进行比较。匹配用于空气燃烧箱的炉子传热。还进行了降低负荷下的调低测试,以研究对火焰稳定性和炉子性能的影响。实验结果包括使用高温测定法推断出点火位置的气体温度,烟气成分分析以及停留时间和碳烧尽。进行了使用Fluent 6.2代码的理论计算流体动力学(CFD)建模研究,以推断火焰点火变化的机理。先前的研究已经确定,空气和氧气系统中气体成分的差异会增加粒子点火时间,并降低层流系统中的火焰传播速度。当前的研究还表明,由于燃烧器的一次和二次速度差异(以及气流的动量通量比)而引起的喷气空气动力学变化也会影响火焰的形状和类型。对于所考虑的含氧燃料改装,含氧燃料燃烧器的主流的较高动量通量会导致预计的点火被延迟并在距离燃烧器喷嘴更远的地方发生,并且在低负载时差异会加剧。但是,该研究仅限于实验火焰都是0型流动旋流,且没有内部再循环),因此,未来的工作认为,较高旋流火焰(具有内部再循环)在工业中更为常见。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号