首页> 外文期刊>Fuel >Thermodynamic analysis of hydrogen production for fuel cells from oxidative steam reforming of methanol
【24h】

Thermodynamic analysis of hydrogen production for fuel cells from oxidative steam reforming of methanol

机译:甲醇氧化重整制氢燃料电池氢的热力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

A thermodynamic analysis of hydrogen production from oxidative steam reforming (OSR) of methanol has been carried out by a Gibbs free energy minimization method. The equilibrium yields of hydrogen, carbon monoxide, methane and coke as a function of H_2O/Me0H ratio (0.0-10.0), O_2/MeOH ratio (0.0-1.0), and temperature (200 ℃, 400 ℃, 600 ℃, 800 ℃) at 0.1 MPa are investigated. Methanol can be fully converted at any H_20/Me0H and O_2/Me0H ratio in the condition range evaluated. Methane is the main product at low temperatures (200 ℃, 400 ℃), while hydrogen and carbon monoxide become dominant products with the increase of the temperature. 600 ℃ is favorable for hydrogen production at which the highest hydrogen yield appears. Carbon monoxide yield increases monotonically with the increase of the temperature and shows its maximum at 800 ℃. An increase of the H_2O/MeOH ratio leads to a preference for hydrogen production as well as an inhibition of the formation of carbon monoxide, methane and coke. The major contribution of adding oxygen is lowering the energy supply and suppressing the potential of coke formation at low H_2O/Me0H ratio. However, the total oxidation of methanol tends to dominant in this case. For the purpose of producing hydrogen-rich gas, no oxygen addition is preferred. The favorable operation window is obtained as 600 ℃, H_2O/MeOH ratio = 6.0-8.0 and O_2/MeOH ratio = 0. Under this optimal condition, 2.77-2.84 mol/mol methanol hydrogen yield and 0.13-0.17 mol/mol methanol carbon monoxide yield with trace amount methane (0.0070-0.017 mol/mol methanol) can be achieved without the risk of carbon deposition.
机译:已经通过吉布斯自由能最小化方法进行了由甲醇的氧化蒸汽重整(OSR)产生的氢气的热力学分析。氢气,一氧化碳,甲烷和焦炭的平衡产率是H_2O / Me0H比(0.0-10.0),O_2 / MeOH比(0.0-1.0)和温度(200℃,400℃,600℃,800℃)的函数研究了在0.1 MPa下的)。在所评估的条件范围内,可以以任何H_20 / Me0H和O_2 / Me0H比率完全转化甲醇。甲烷是低温(200℃,400℃)下的主要产物,而氢气和一氧化碳随着温度的升高而成为主要产物。 600℃有利于制氢,此时氢气产量最高。一氧化碳的产率随温度的升高而单调增加,并在800℃时达到最大值。 H_2O / MeOH比率的增加导致偏爱制氢以及抑制一氧化碳,甲烷和焦炭的形成。添加氧气的主要作用是降低能量供应并抑制低H_2O / MeH比率下焦炭的形成。然而,在这种情况下,甲醇的总氧化趋于占优势。为了产生富氢气体,优选不添加氧气。在600℃,H_2O / MeOH比= 6.0-8.0,O_2 / MeOH比= 0的情况下获得了良好的操作窗口。在此优化条件下,甲醇氢气的产氢率为2.77-2.84 mol / mol,甲醇一氧化碳为0.13-0.17 mol / mol。可以实现痕量甲烷(0.0070-0.017 mol / mol甲醇)的收率,而无碳沉积的风险。

著录项

  • 来源
    《Fuel》 |2012年第2012期|p.805-811|共7页
  • 作者单位

    Tianjin Key Laboratory of Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Tianjin 300072, China,State Key Laboratory for Chemical Engineering, School of Chemical Engineering, Tianjin University, Tianjin 300072, China;

    Tianjin Key Laboratory of Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Tianjin 300072, China,State Key Laboratory for Internal Combustion Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China;

    Tianjin Key Laboratory of Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Tianjin 300072, China;

    State Key Laboratory for Internal Combustion Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China;

    Tianjin Key Laboratory of Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Tianjin 300072, China,State Key Laboratory for Chemical Engineering, School of Chemical Engineering, Tianjin University, Tianjin 300072, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    methanol; oxidative steam reforming; hydrogen production; thermodynamics;

    机译:甲醇氧化蒸汽重整;制氢热力学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号