首页> 外文期刊>Fuel >Investigation of fuel injection pattern on soot formation and oxidation processes in a light-duty diesel engine using integrated CFD-reduced chemistry
【24h】

Investigation of fuel injection pattern on soot formation and oxidation processes in a light-duty diesel engine using integrated CFD-reduced chemistry

机译:使用集成的CFD还原化学方法研究轻型柴油机中燃油喷射模式对烟灰形成和氧化过程的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In this reported work, simulation studies of in-cylinder diesel combustion and soot formation processes under different configuration of the split-main injection scheme were presented. Numerical computation was performed by linking a plug-in chemistry solver CHEMKIN-CFD into ANSYS FLUENT package, in order to integrate chemical kinetic mechanism and Computational Fluid Dynamics (CFD) computations. For improved computational runtime, an in-house reduced chemical mechanism was coupled with the CFD code. The reduced mechanism comprises 112 reactions with 46 species essential to diesel ignition/combustion and the formation of soot precursors and nitrogen monoxide (NO). Numerical models were first validated against experimental combustion characteristics as well as concentrations of engine-out soot and NO of a single-cylinder, light-duty diesel engine when using a split-main injection scheme. Parameters of this injection scheme were then investigated, which included start of injection (SOI) timings, fuel mass ratios of the injection pulses and the dwell period in between injections. The key interest here was to elucidate how these affect exhaust NO and soot levels, and in particular the in-cylinder soot formation and oxidation events. Fuel mass injected, duration of the injection and in-cylinder temperature were found to shape the soot formation and oxidation processes, which eventually produced the observed variations in the soot density at exhaust valve opening time. Based on all the simulation data from this reported work, power law was found to accurately describe the correlations between soot surface growth rate and gas mass fraction with a temperature range of 1400-2800 K and an equivalence ratio values of greater than unity. The values of both constants of the power law were highly sensitive to the in-cylinder mean gas temperatures. The findings here are helpful in providing a better understanding of in-cylinder diesel soot formation and oxidation processes in this combustion system.
机译:在这项报告的工作中,提出了在分流式主喷射方案不同配置下缸内柴油燃烧和烟灰形成过程的模拟研究。通过将插入式化学求解器CHEMKIN-CFD链接到ANSYS FLUENT软件包中,可以进行数值计算,以便集成化学动力学机制和计算流体动力学(CFD)计算。为了改善计算运行时间,将内部简化的化学机制与CFD代码结合使用。减少的机理包括与柴油点火/燃烧以及形成烟尘前体和一氧化氮(NO)必不可少的46种物质的112种反应。当使用分流式主喷射方案时,首先针对实验燃烧特性以及单缸轻型柴油机的发动机烟so和NO浓度对数值模型进行了验证。然后研究了该喷射方案的参数,其中包括喷射开始(SOI)计时,喷射脉冲的燃料质量比以及两次喷射之间的停留时间。这里的主要兴趣是阐明这些因素如何影响排气中NO和烟灰水平,尤其是缸内烟灰的形成和氧化事件。发现喷射的燃料质量,喷射持续时间和缸内温度会影响烟灰的形成和氧化过程,从而最终在排气门打开时产生观察到的烟灰密度变化。基于此报告工作的所有模拟数据,发现幂律可准确描述温度范围为1400-2800 K且当量比值大于1的煤烟表面生长速率与气体质量分数之间的相关性。幂律的两个常数的值对缸内平均气体温度高度敏感。此处的发现有助于更好地了解此燃烧系统中的缸内柴油机烟灰形成和氧化过程。

著录项

  • 来源
    《Fuel》 |2012年第2012期|p.404-418|共15页
  • 作者单位

    Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia;

    Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia;

    Department of Chemical and Environmental Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    fuel injection; light-duty diesel engine; soot process; chemical kinetic mechanism;

    机译:燃油喷射轻型柴油发动机;烟灰过程;化学动力学机理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号