...
首页> 外文期刊>Fuel >Chemical and radiation effects on flame extinction and NOx formation in oxy-methane combustion diluted with CO2
【24h】

Chemical and radiation effects on flame extinction and NOx formation in oxy-methane combustion diluted with CO2

机译:CO2稀释的甲烷氧化过程中化学和辐射对火焰熄灭和NOx形成的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Oxy-methane counterflow diffusion flames diluted with CO2 were investigated to clarify impact of radiation heat loss and chemical effects of additional CO2 to oxidizer stream on flame extinction and NOx formation caused by air infiltration. Flame stability maps were presented with a functional dependency of critical diluents mole fraction upon global strain rate at various oxidizer stream temperatures in CH4-O-2/N-2, CH4-O-2/CO2, and CH4-O-2/CO2/N-2 counterflow diffusion flames. The effects of radiation heat loss on the critical diluent mole fractions for flame extinction are not significant even at low strain rate in CH4-O-2/N-2 flame whereas those are significant at low strain rate and are negligible at high strain rate (>200 s(-1)) in CH4-O-2/CO2 and CH4-O-2/CO2/N-2 flames. Chemical effects of additional CO2 to oxidizer stream on the critical diluent mole fractions for flame extinction were appreciable in CH4-O-2/CO2 and CH4-O-2/CO2/N-2 flames. A scaling analysis based on asymptotic solution of stretched flame extinction was applied. A specific radical index, which could reflect the OH population in main reaction zone via controlling the mixture composition in the oxidizer stream, was identified to quantify the chemical kinetic contribution to flame extinction. A good correlation of predicted extinction limits to those calculated numerically were obtained via the ratio between radical indices and oxidizer Lewis numbers for the target and baseline flames. This offered an effective approach to estimate extinction strain rate of oxy-methane diffusion flames permitting air infiltration when the baseline flame was taken to CH4-O-2/N-2 flame. Further study was conducted to investigate NOx formation in air infiltration environments. NOx formation could be suppressed by radiation heat loss and chemical effects of additional CO2 in oxy-methane combustion permitting air infiltration. The effect of air infiltration on NOx emission is addressed, and chemical effects of CO2 on NOx emission are discussed. (C) 2016 Elsevier Ltd. All rights reserved.
机译:研究了用CO2稀释的氧气-甲烷逆流扩散火焰,以阐明辐射热损失的影响以及氧化剂流中额外的CO2对空气渗透引起的火焰熄灭和NOx形成的化学作用。在CH4-O-2 / N-2,CH4-O-2 / CO2和CH4-O-2 / CO2的各种氧化剂流温度下,火焰稳定度图显示了关键稀释剂摩尔分数对整体应变率的函数依赖性。 / N-2逆流扩散火焰。即使在CH4-O-2 / N-2火焰中低应变率下,辐射热损失对关键稀释剂摩尔分数的影响也不显着,而在低应变率下显着,而在高应变率下则可忽略不计(在CH4-O-2 / CO2和CH4-O-2 / CO2 / N-2火焰中> 200 s(-1))。在CH4-O-2 / CO2和CH4-O-2 / CO2 / N-2火焰中,氧化剂流中额外的CO2对关键的稀释剂摩尔分数的火焰熄灭具有化学作用。应用基于火焰熄灭的渐近解的标度分析。确定了一个特定的自由基指数,该指数可以通过控制氧化剂流中的混合物组成来反映主要反应区的OH含量,以量化化学动力学对火焰熄灭的贡献。通过目标火焰和基线火焰的自由基指数与氧化剂路易斯数之间的比率,可以得出预测的消光极限与数值计算的极好相关性。当基线火焰变为CH4-O-2 / N-2火焰时,这提供了一种有效的方法来估算允许空气渗透的氧-甲烷扩散火焰的消光应变速率。进行了进一步的研究以调查在空气渗透环境中NOx的形成。 NOx的形成可以通过辐射热损失和在氧气-甲烷燃烧中允许空气渗透的附加CO2的化学作用来抑制。讨论了空气渗透对NOx排放的影响,并讨论了CO2对NOx排放的化学影响。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Fuel》 |2016年第1期|235-243|共9页
  • 作者单位

    Korea Elect Power Res Inst, Power Generat Res Lab, Seoul, South Korea;

    Pukyong Natl Univ, Dept Mech Engn, Busan 608737, South Korea|Pukyong Natl Univ, Interdisciplinary Program Marine Bio Elect & Mech, Busan 608737, South Korea;

    Korea Elect Power Res Inst, Power Generat Res Lab, Seoul, South Korea;

    Pukyong Natl Univ, Dept Mech Engn, Busan 608737, South Korea|Pukyong Natl Univ, Interdisciplinary Program Marine Bio Elect & Mech, Busan 608737, South Korea;

    Chungnam Natl Univ, Dept Mech Engn, Seoul, South Korea;

    Myongji Univ, Dept Mech Engn, Daejeon, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Chemical effects; Radiation heat loss; Flame extinction; Radical index;

    机译:化学作用;辐射热损失;消光;辐射指数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号