...
首页> 外文期刊>Fuel >Grand canonical Monte Carlo simulations of pore structure influence on m ethane adsorption in micro-porous carbons with applications to coal and shale systems
【24h】

Grand canonical Monte Carlo simulations of pore structure influence on m ethane adsorption in micro-porous carbons with applications to coal and shale systems

机译:蒙特卡洛模拟的大正则模拟对微孔碳中甲烷吸附的影响及其在煤和页岩体系中的应用

获取原文
获取原文并翻译 | 示例

摘要

Coal and shale are strong heterogeneous anisotropic media involving nanoscale pore size and variance of microstructure. The complexity of methane adsorption is expressed both in diverse chemical properties and confined pore structures. In this study, Grand canonical Monte Carlo simulations were carried out to assess the influence of pore structure on methane adsorption at temperature 318 K, 333 K and pressure up to 20 MPa. The pore radii of physical carbon-based model range from 0.55 nm to 1.15 nm at the step of 0.1 nm. Simulated results indicate that the excess adsorption isotherms and maximum excess adsorption density are notably different for different pore structures. The triangle pore exhibits largest value of maximum excess adsorption density followed by the slit pore, circle pore and square pore. The maximum excess adsorption density is larger than 6x10(3) mol/m(3) at simulated temperatures for triangle pore with pore radius less than 1 nm. The excess adsorption amount first increases with the increase of pressure and then decreases when the pressure is larger than 7.5 MPa for slit pore and 5 MPa for the circle pore, triangle pore and square pore. The excess adsorption amount for circle pore and square pore drops down to negative value when the pressure is larger than 12.5 MPa while the excess adsorption amount stays above zero across simulated pressure for the slit pore and triangle pore. The adsorption isotherms of micro-porous carbons were obtained by superposition of simulated adsorption isotherms based on the pore size distribution and were compared with coal samples experimental data gathered from the same temperature. The experimental isotherm is more close to slit pore excess isotherm and predicted excess isotherms based on circle pore and square pore under-estimate excess adsorption capacity.
机译:煤和页岩是强的非均质各向异性介质,涉及纳米级孔径和微观结构的变化。甲烷吸附的复杂性以多种化学性质和狭窄的孔隙结构表示。在这项研究中,进行了大经典的蒙特卡洛模拟,以评估孔结构对温度为318 K,333 K和最高压力为20 MPa时甲烷吸附的影响。物理碳基模型的孔半径范围为0.55 nm至1.15 nm,步距为0.1 nm。模拟结果表明,不同孔隙结构的过量吸附等温线和最大过量吸附密度存在显着差异。三角形孔展现出最大过量吸附密度的最大值,其次是狭缝孔,圆形孔和方孔。在模拟温度下,孔半径小于1 nm的三角形孔的最大过量吸附密度大于6x10(3)mol / m(3)。过量吸附量首先随着压力的增加而增加,然后当狭缝孔的压力大于7.5 MPa,圆形孔,三角形孔和方孔的压力大于5 MPa时减小。当压力大于12.5 MPa时,圆形孔和方形孔的过量吸附量下降至负值,而在狭缝孔和三角形孔的模拟压力下,过量吸附量保持在零以上。通过基于孔径分布的模拟吸附等温线叠加获得微孔碳​​的吸附等温线,并将其与在相同温度下收集的煤样品实验数据进行比较。实验等温线更接近于狭缝孔的过量等温线,并且基于圆形孔和方孔的预测的过量等温线低估了过量的吸附容量。

著录项

  • 来源
    《Fuel 》 |2018年第1期| 195-203| 共9页
  • 作者单位

    China Univ Petr, Res Ctr Multiphase Flow Porous Media, 66 Changjiang West Rd, Qingdao 266580, Peoples R China;

    China Univ Petr, Res Ctr Multiphase Flow Porous Media, 66 Changjiang West Rd, Qingdao 266580, Peoples R China;

    Heriot Watt Univ, Inst Petr Engn, Edinburgh EH14 4AS, Midlothian, Scotland;

    China Univ Petr, Res Ctr Multiphase Flow Porous Media, 66 Changjiang West Rd, Qingdao 266580, Peoples R China;

    Sinopec, Dept Oilfield Explorat & Dev, Beijing 100029, Peoples R China;

    China Univ Petr, Res Ctr Multiphase Flow Porous Media, 66 Changjiang West Rd, Qingdao 266580, Peoples R China;

    China Univ Petr, Res Ctr Multiphase Flow Porous Media, 66 Changjiang West Rd, Qingdao 266580, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Methane adsorption; Grand canonical Monte Carlo; Pore structure; Coal and shale; Porous characterization;

    机译:甲烷吸附;经典蒙特卡洛法;孔结构;煤页岩;多孔性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号