...
首页> 外文期刊>Fuel >The evolution of chemical groups and isotopic fractionation at different maturation stages during lignite pyrolysis
【24h】

The evolution of chemical groups and isotopic fractionation at different maturation stages during lignite pyrolysis

机译:褐煤热解过程中不同成熟阶段化学基团和同位素分馏的演变

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this study, the evolution of different chemical groups and isotopic fractionation at different maturation stages of coals were investigated by gold-tube pyrolysis, detailed geochemical analysis and theoretical calculations based on Density Function Theory (DFT). The results from non-isothermal pyrolysis of lignite revealed that the conversion and hydrocarbon generation of lignite can be divided into four maturation stages in the range of R-o from 0.35 to 4.66%. Fourier-transform infrared spectra (FTIR) results of residual coals showed that the evolution of different functional groups dominates the generation of oil and gas products at different maturation stages. Correspondingly, the activation energy for methane generation was fitted into four Gaussian distributions, which elucidated different formation mechanisms or precursors of methane. Theoretical calculations indicated that the difference of isotopic fractionation kinetics for the cleavage of different chemical groups dominates carbon and hydrogen isotopic compositions of methane during lignite pyrolysis. By calculation of the isotopic fractionation factor (alpha = k*/k) for the cleavage of ethyl and methyl radical, a simplified model was established to predict the carbon isotopic ratios of ethane (delta C-13(2)) with and without cracking. Moreover, thermodynamic calculations confirmed that the occurrence of recombination between ethane and polycyclic aromatics is available at temperatures between 25 and 650 degrees C. It is also demonstrated that the isotopic exchange between ethane and methyl aromatics can occur and will result in the depletion of D for residual coals and C-13 for ethane during this process. Hence, the recombination reactions should be responsible for the rollover of delta C-13(2) at extremely high maturity both in experimental and geological conditions.
机译:通过金管热解,详细的地球化学分析和基于密度泛函理论(DFT)的理论计算,研究了煤在不同成熟阶段不同化学基团和同位素分馏的演变。褐煤的非等温热解结果表明,褐煤的转化和生烃过程可分为四个成熟阶段,R 0为0.35-4.66%。残留煤的傅立叶变换红外光谱(FTIR)结果表明,不同官能团的演化在不同成熟阶段主导着油气产品的生成。相应地,甲烷生成的活化能被拟合为四个高斯分布,阐明了甲烷的不同形成机理或前体。理论计算表明,在褐煤热解过程中,不同化学基团裂解的同位素分馏动力学差异主导了甲烷的碳和氢同位素组成。通过计算用于裂解乙基和甲基的同位素分馏因子(alpha = k * / k),建立了一个简化的模型来预测有和没有裂化的乙烷的碳同位素比(δC-13(2)) 。此外,热力学计算证实,在25至650摄氏度之间的温度下,乙烷和多环芳族化合物之间可发生重组。还证明,乙烷与甲基芳族化合物之间可发生同位素交换,并会导致D的耗竭。在此过程中,残留的煤和乙烷的C-13。因此,无论是在实验条件还是在地质条件下,重组反应都应在极高的成熟度下导致δC-13(2)的翻转。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号