...
首页> 外文期刊>Fuel >Facile synthesis of polyaniline/titanium carbide (MXene) nanosheets/ palladium nanocomposite for efficient electrocatalytic oxidation of methanol for fuel cell application
【24h】

Facile synthesis of polyaniline/titanium carbide (MXene) nanosheets/ palladium nanocomposite for efficient electrocatalytic oxidation of methanol for fuel cell application

机译:聚苯胺/碳化钛(MXENE)纳米片/钯纳米复合材料的容易合成,用于高效电催化氧化甲醇的燃料电池应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Slow methanol oxidation reaction kinetics with current electrocatalysts is the major limitation to widespread application and development in direct-methanol fuel cells (DMFCs). The present work demonstrates a highly efficient electrocatalyst for methanol electrooxidation reaction (MEOR) using polyaniline/palladium/Ti3C2Tx (PANI/Pd/MXene) nanocomposite. The PANI/Pd/MXene nanocomposite was prepared using a one-pot electrochemical co-deposition technique with a pre-anodized screen-printed electrode (SPE) under acidic electrolyte solution containing Ti3C2Tx, aniline, and palladium chloride as precursors. The PANI/Pd/MXene nanocomposite was examined using FESEM, TEM, FT-IR, XPS, and cyclic voltammetric techniques. The electrochemical response of the PANI/Pd/MXene nanocomposite shows enhanced electrocatalytic response towards the oxidation of methanol, with a peak current density of 291 mA cm-2, approximately three times higher than Pd/MXene (106 mA cm-2). Furthermore, it was also stable up to 100 cycles. The electrochemically active PANI/Pd sites are incorporated with MXene nanosheets, facilitating a more efficient MEOR. This stimulating result was achieved due to the sturdy metal-support interactions between PANI/Pd and MXene nanosheets that provide maximum methanol adsorption on the electrode surface for efficient electrocatalytic oxidation. Thus, the Ti3C2Tx support tailors the metal electrocatalyst interface and surface properties, resulting in improved electrocatalytic performance. This study highlights a facile approach for designing MXene-supported noble metal electrocatalysts for MEOR in direct-methanol fuel cells.
机译:具有电流电催化剂的慢甲醇氧化反应动力学是对直接甲醇燃料电池(DMFC)的广泛应用和发育的主要限制。本作者使用聚苯胺/钯/ Ti3C2TX(PANI / Pd / MXENE)纳米复合材料说明了对甲醇电氧化反应(MEOR)的高效电催化剂。使用单盆电化学共沉积技术使用用一锅电化学共沉积技术,在含有Ti3C2Tx,苯胺和氯化钯作为前体的酸性电解质溶液下用一锅电化学型印刷电极(SPE)制备PANI电化学共沉积技术。使用FESEM,TEM,FT-IR,XPS和循环伏安技术检查PANI / Pd / mxene纳米复合物。 PANI / Pd / mxENE纳米复合材料的电化学响应显示出对甲醇氧化的增强的电催化反应,具有291mA CM-2的峰值电流密度,比Pd / mxene高约三倍(106mA cm-2)。此外,它也稳定多达100个循环。电化学活性PANI / PD位点与MXENE纳米液结合,促进更有效的MEOR。由于PANI / Pd和MxENE纳米片之间的坚固的金属 - 支持相互作用,在电极表面上提供最大甲醇吸附以获得有效的电催化氧化,因此实现了这种刺激结果。因此,Ti3C2TX支持量裁定金属电催化剂界面和表面性质,导致电催化性能提高。本研究突出了一种用于设计甲醇燃料电池中Meor的MXENE支持的贵金属电催化剂的容易方法。

著录项

  • 来源
    《Fuel》 |2021年第1期|121329.1-121329.9|共9页
  • 作者单位

    Kaohsiung Med Univ KMU Dept Med & Appl Chem Kaohsiung 807 Taiwan|Kaohsiung Med Univ KMU Res Ctr Environm Med Kaohsiung 807 Taiwan;

    Kaohsiung Med Univ KMU Dept Med & Appl Chem Kaohsiung 807 Taiwan|Kaohsiung Med Univ KMU Res Ctr Environm Med Kaohsiung 807 Taiwan|Indian Inst Technol Cent Instrumentat Facil Jammu 181221 Jammu & Kashmir India;

    Drexel Univ AJ Drexel Nanomat Inst Philadelphia PA 19104 USA|Drexel Univ Dept Mat Sci & Engn Philadelphia PA 19104 USA;

    Vellore Inst Technol VIT Sch Adv Sci Dept Chem Vellore 632014 Tamil Nadu India;

    Natl Cheng Kung Univ Promot Ctr Global Mat Res PCGMR Dept Mat Sci & Engn Tainan 701 Taiwan;

    Natl Inst Technol Puducherry Dept Chem Karaikal 609609 India;

    Kaohsiung Med Univ KMU Dept Med & Appl Chem Kaohsiung 807 Taiwan|Kaohsiung Med Univ KMU Res Ctr Environm Med Kaohsiung 807 Taiwan|Kaohsiung Med Univ Hosp KMUH Dept Med Res Kaohsiung 807 Taiwan|Natl Sun Yat Sen Univ NSYSU Dept Chem Kaohsiung 804 Taiwan|Natl Kaohsiung Univ Sci & Technol NKUST Coll Hydrosphere Sci Program Aquat Sci & Technol Kaohsiung 807 Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MXene nanosheets; Polyaniline; Palladium nanoparticles; Methanol oxidation; Electrodeposition; Fuel cell;

    机译:mxene nanosheet;聚苯胺;钯纳米粒子;甲醇氧化;电沉积;燃料电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号