首页> 外文期刊>Fuel >Integrated modeling of multi-scale transport in coal and its application for coalbed methane recovery
【24h】

Integrated modeling of multi-scale transport in coal and its application for coalbed methane recovery

机译:煤炭多尺度运输的综合建模及其对煤层气回收的应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Exploitation of coalbed methane (CBM) acts as a synergy between increased natural gas demand and reduced greenhouse gas emissions to the atmosphere. However, substantial CBM resources lie undeveloped because of unfavorable economic conditions. Accurate forecast of production based on a thorough understanding of physical mechanisms is the key to increase and sustain CBM recovery. CBM production involves complex multi-scale phenomena ranging from desorption and diffusion in nanoporous matrix at molecular level to Darcy flow of free gas in cleats at macroscopic level. Current computational modeling built on fracture flow and neglecting multi-scale coupled flow phenomena underestimates long-term production performance. In fact, experimental evidence indicated that matrix experienced a much greater increase in gas deliverability than cleats. In this work, apparent matrix permeability was derived to characterize diffusion rate and directly coupled into current modeling to decipher matrix deliverability and multi-scale flow. The proposed modeling workflow was applied to two field cases in San Juan Fairway with long production history of over 20 years, which assembled adequate forecast to field data. Besides, sensitivity analysis suggested that simulations neglecting matrix flow and solely updating fracture flow were prone to elevated prediction errors for long-term production when diffusive mass flux took the predominant role in overall gas transport. The multi-scale CBM model is convenient for elucidating complex gas transport physics in coal. The outcome of this work implies that a proper diffusion enhancement method can improve overall production rate and elongate total productive lifetime of CBM fields.
机译:煤层气的开采(CBM)作为增强天然气需求和降低温室气体排放的协同作用。但是,由于经济状况不利的经济条件,大量CBM资源令人未开发。基于对物理机制的彻底了解,基于对物理机制的彻底了解的准确预测是增加和维持CBM恢复的关键。 CBM生产涉及复杂的多尺度现象,从解吸和扩散在纳米多孔基质中的分子水平到宏观水平的碎屑中的游离气体流动。基于裂缝流动的电流计算建模,忽略多尺度耦合流动现象低估了长期生产性能。实际上,实验证据表明,基质的气体可递送性比夹层大大增加。在这项工作中,推导出表观矩阵渗透率,以表征扩散速率并直接耦合到电流建模中以破译矩阵可传送性和多尺度流。拟议的建模工作流程应用于长期生产历史超过20年的San Juan Fairway的两个现场案例,其中组装了足够的预测对现场数据。此外,敏感性分析表明,忽略矩阵流动并仅更新裂缝流动的敏感性易于在扩散质量通量在整体气体运输中取代的主要作用时升高的预测误差。多级CBM模型方便阐明煤中的复杂气体输送物理学。该工作的结果意味着适当的扩散增强方法可以提高整体生产率和伸长CBM场的总生产寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号