...
首页> 外文期刊>Fuel >Co-simulating fouling, erosion of gas-particle flow and morphologies predictions around circular tube via parallel CFD-DEM modeling
【24h】

Co-simulating fouling, erosion of gas-particle flow and morphologies predictions around circular tube via parallel CFD-DEM modeling

机译:通过并行CFD-DEM模型共同模拟圆形管围绕圆管的腐蚀和形态预测

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a novel CFD-DEM model, co-simulating erosion, fouling of the gas-particle flow and predicting morphologies, is presented to simulate the industrial circular tube. The particle impact model is treated as a mechanistic foundation to build particle sticking and erosion sub-models, which is more convenient to assess the fouling state and the erosion rate. Morphologies for particle fouling and erosion are given by the clustered particles and the dynamic mesh. Most innovative in the particle fouling, converting the DEM particle parcel into the particle container is used to the fouling time magnification, which has been testified reasonable. Results indicate that the proposed model can be used for co-simulating erosion, fouling of gas-particle flow and morphologies predictions when validated by experimental data. For fouling, the fouling layer prevents the particle to impact the tube wall and itself, resulting in the decline of impaction efficiency and the slow change of fouling. The mass deposition of low-velocity fine particle is still massive, despite that the impaction efficiency is lower. The fouling growth is first quick, and then becomes slow. The fouling process of the fine particle needs more time than the large particle to reach the critical fouling thickness. For erosion, the mass loss presents the linear growth as time goes up. The erosion rate is almost proportional to the 3.4 power of particle size, and the 2.7 power of particle velocity.
机译:本文提出了一种新型CFD-DEM模型,共模侵蚀,气体颗粒流动的污染和预测形态,以模拟工业圆管。粒子冲击模型被视为机械基础,以构建颗粒粘附和腐蚀子模型,这更方便地评估结垢状态和侵蚀率。用于颗粒污垢和腐蚀的形态由聚簇颗粒和动态网。在粒子污染中最具创新性,将DEM粒子包裹转换为颗粒容器,用于结垢时间倍率,这已经证实了合理的。结果表明,当实验数据验证时,所提出的模型可用于共模侵蚀,气体颗粒流动和形态的污染。对于污垢,污垢层可以防止颗粒冲击管壁和本身,导致巨型效率的下降和污垢变化缓慢。尽管换效效率较低,但低速微粒的质量沉积仍然是巨大的。污垢增长首先快速,然后变得缓慢。细粒的污垢过程需要比大颗粒更多的时间,以达到临界污垢厚度。对于侵蚀,随着时间的推移,大众损失呈现线性生长。侵蚀速率几乎与粒度的3.4功率成比例,以及颗粒速度的2.7个功率。

著录项

  • 来源
    《Fuel》 |2021年第15期|120464.1-120464.12|共12页
  • 作者单位

    Southeast Univ Sch Energy & Environm Key Lab Energy Thermal Convers & Control Minist Educ Nanjing 210096 Peoples R China;

    Southeast Univ Sch Energy & Environm Key Lab Energy Thermal Convers & Control Minist Educ Nanjing 210096 Peoples R China;

    Southeast Univ Sch Energy & Environm Key Lab Energy Thermal Convers & Control Minist Educ Nanjing 210096 Peoples R China;

    Southeast Univ Sch Energy & Environm Key Lab Energy Thermal Convers & Control Minist Educ Nanjing 210096 Peoples R China;

    Southeast Univ Sch Energy & Environm Key Lab Energy Thermal Convers & Control Minist Educ Nanjing 210096 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fouling; Erosion; Morphologies predictions; Co-simulation; Circular tube;

    机译:污垢;侵蚀;形态预测;共模;圆形管;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号