首页> 外文期刊>Fuel >Impact of particle size and catalyst dispersion on gasification rates measured in a thermogravimetric analysis unit: Case study of carbon black catalyzed by potassium or calcium
【24h】

Impact of particle size and catalyst dispersion on gasification rates measured in a thermogravimetric analysis unit: Case study of carbon black catalyzed by potassium or calcium

机译:粒径和催化剂分散对热重分析单元测量的气化率的影响:钾或钙催化炭黑的壳体研究

获取原文
获取原文并翻译 | 示例
           

摘要

Gasification is often studied in the laboratory using a thermogravimetric analysis (TGA) unit with less than 1 g of sample in order to obtain intrinsic rates. Many studies, however, neglect to consider the impact of particle size, of both the gasification feed and the catalyst, and catalyst dispersion on the measured rates. The impact of these factors was demonstrated using catalytic gasification of carbon black, an ash-free feed, as a case study, with K2CO3 or CaCO3 as catalysts at 850 degrees C in a CO2 atmosphere. Hand-mixing and ball-milling were used to alter the initial parameters. Ball-milling reduced both the particle size of both species and increased the catalyst dispersion, resulting in higher interfacial areas and gasification rates than hand-mixing. The changes in gasification kinetics were estimated by modeling the rates using the random pore and extended random pore models (RPM and eRPM, respectively). The impact of the interfacial contact area between carbon and catalysts (varied by particle size and mixing method) was dependent on the activity of the catalyst with the more active (potassium) catalyst being less affected. CaCO3 was found to sinter at 850 degrees C, reducing available catalytic surface area and blocking CO2 access to the carbon feed. It is recommended to consider these factors in future studies and to always report the particle sizes used.
机译:使用小于1g样品的热重分析(TGA)单元,通常在实验室中研究气化,以获得内在速率。然而,许多研究忽略了考虑粒径,气化进料和催化剂的影响,以及对测量速率的催化剂分散。使用炭黑的催化气化,无灰饲料,作为壳体研究的催化气化来证明这些因素的影响,在CO 2气氛中为850℃的催化剂。手工混合和球磨用于改变初始参数。球铣削两种物种的粒度和增加催化剂分散体,导致界面区域较高,而不是手工混合。通过使用随机孔和延长的随机孔模型(分别为RPM和ERPM)来估算气化动力学的变化。碳和催化剂之间的界面接触面积(通过粒度和混合方法而变化)的影响取决于催化剂的活性与较低的受活性(钾)催化剂的活性。发现CaCO 3在850℃下烧结,减少可用的催化表面积并阻断CO 2进入碳进料。建议在未来的研究中考虑这些因素,并始终报告使用的粒子尺寸。

著录项

  • 来源
    《Fuel》 |2021年第15期|119677.1-119677.8|共8页
  • 作者单位

    Univ Calgary Dept Chem & Petr Engn Schulich Sch Engn 2500 Univ Dr Calgary AB T2N 1N4 Canada|Univ Calif Los Angeles Dept Civil & Environm Engn Samueli Sch Engn Los Angeles CA 90095 USA;

    Univ Calgary Dept Chem & Petr Engn Schulich Sch Engn 2500 Univ Dr Calgary AB T2N 1N4 Canada|Univ Estadual Campinas Sch Chem Engn Ave Albert Einstein 500 BR-13083852 Campinas Brazil;

    Univ Calgary Dept Chem & Petr Engn Schulich Sch Engn 2500 Univ Dr Calgary AB T2N 1N4 Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Gasification; Potassium; Calcium; Ball-milling; Catalyst; Random pore model;

    机译:气化;钾;钙;球磨;催化剂;随机孔模型;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号