首页> 外文期刊>Fuel >Thickness of gas hydrate stability zone in permafrost and marine gas hydrate deposits: Analysis and implications
【24h】

Thickness of gas hydrate stability zone in permafrost and marine gas hydrate deposits: Analysis and implications

机译:多年冻土和海洋气体水合物沉积物气水水合物稳定区的厚度:分析与含义

获取原文
获取原文并翻译 | 示例
           

摘要

Naturally-occurring gas hydrate, either in deepwater continental margins or in permafrost regions, is a promising unconventional energy resource which has attracted a lot attention from governments and researchers. In this paper, we studied the phase behavior for methane hydrate and mixed-gas hydrate. Four permafrost hydrates and three marine hydrate deposits were selected for analysis. They were Messoyakha (Russia), Mount Elbert (Alaska), Mackezie (Canada), Qilian Mountain (China) in permafrost regions and Blake Ridge (West Coast of US), Shenhu (South China Sea), and Nankai Trough (Japan Sea) in deepwater continental margins. The thickness of the gas hydrate stability zone (GHSZ) was calculated and compared. Our results show that the thickness of the GHSZ in permafrost regions is 1.3 to 4.5 times thicker than that in marine regions due to three factors: lower mudline temperature, smaller geothermal gradients and higher percentage of non-methane gases. The ramifications are that both the gas initially-in-place and the gas production rate will likely be higher in the permafrost environment. In addition, like other unconventional reservoirs, sustained gas production from a gas hydrate reservoir will likely require constantly drilling new wells to replace declining production from existing wells. All these suggest that development of gas hydrate in deep marine environment may be cost prohibitive. On the other hand, the well cost and drilling challenges will be significantly lower in the onshore permafrost environment where the resource density is also higher. Consequently, we see more potential for commercial development of permafrost hydrates than marine hydrates.
机译:天然存在的天然气水合物,无论是深水大陆边缘还是多年冻土区域,都是一个有前途的非传统能源,这引起了各国政府和研究人员的欢迎。在本文中,我们研究了甲烷水合物和混合气水合物的相行为。选择四种多达水合物和三种海洋水合物沉积物进行分析。他们是Messoyakha(俄罗斯),埃尔伯特(阿拉斯加),Mackezie(加拿大),祁连山(中国),祁连山(中国),在多弗罗斯特地区和布莱克里奇(美国西海岸),申湖(南海)和南开谷(日本海)深水大陆边缘。计算并比较气体水合物稳定区(GHSZ)的厚度。我们的研究结果表明,由于三种因素,永久性地区的GHSZ厚度比海洋地区厚度为1.3至4.5倍:较低的泥线温度,较小的地热梯度和更高的非甲烷气体百分比。在多年冻土环境中,改变始于原始的气体和气体生产率可能会更高。此外,与其他非常规储层一样,来自天然气水合物储层的持续天然气生产可能需要不断钻出新的井以取代现有井的产量下降。所有这些都表明,深海环境中的天然气水合物的发展可能是成本持久的。另一方面,在陆上永久冻土环境中,井的成本和钻孔挑战将在资源密度也更高。因此,我们看到多冻土水合物商业发展的可能性而不是海洋水合物。

著录项

  • 来源
    《Fuel》 |2020年第15期|118784.1-118784.11|共11页
  • 作者

    Wang Jinjie; Lau Hon Chung;

  • 作者单位

    China Univ Geosci Key Lab Tecton & Petr Resources Minist Educ Wuhan 430074 Peoples R China|Natl Univ Singapore Dept Civil & Environm Engn Singapore 117576 Singapore;

    Natl Univ Singapore Dept Civil & Environm Engn Singapore 117576 Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Methane hydrate; Mixed-gas; Phase behavior; Gas hydrate stability zone; Deepwater; Permafrost;

    机译:甲烷水合物;混合气体;相行为;天然气水合物稳定区;深水;永久冻土;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号