首页> 外文期刊>Fuel >Modeling and numerical simulations of lignite char gasification with CO_2: The effect of gasification parameters on internal transport phenomena
【24h】

Modeling and numerical simulations of lignite char gasification with CO_2: The effect of gasification parameters on internal transport phenomena

机译:褐煤炭气化与CO_2的建模与数值模拟:气化参数对内部运输现象的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The purpose of this study is to develop an experimental data-based char particle gasification model in order to assess the effects of particle size, gasification temperature and char generation heating rate on global gasification parameters. Also, the effect of initial porosity is observed by performing parametrical numerical simulations. A continuum-based model is used to solve the gasification inside a char particle and within the external boundary layer. The intrinsic rate of CO2 gasification reaction is computed according to Langmuir-Hinshelwood (LH) mechanism. External mass transfer is modeled by Stefan-Maxwell relations, and Cylindrical Pore Interpolation Model (CPIM) is used for intra-particle molecular diffusion. In the model, all the effects due to particle internal structure changes are represented by a global conversion function, f(X) which is computed from local reaction rate values. In this study, f(X) is deduced from experimental results instead of phenomenological models almost impossible to validate. The best reproduction of the experimental gasification results is obtained for the function f(X) postulated as a summation of two Gaussian functions which represent the char particle random pore structures and their dynamics during gasification. Comparative simulation results show that the Gaussian for low conversion interval is shifted to even lower conversion values for higher gasification temperature and higher initial porosity. Thereby, the Gaussian function for low conversion rates (large particle sizes) is interpreted as representative of the diffusion-limited gasification regime in conjunction with the network of macropores and molecular diffusion rates. The modification of the pore structure due to char generation heating rates causes a shift of the second Gaussian towards higher conversion rates. It is therefore postulated that the second Gaussian function corresponds to the boundary layer diffusion-controlled regime related to available outer surface area of the particle.
机译:本研究的目的是开发基于实验数据的炭颗粒气化模型,以评估粒度,气化温度和炭化加热速率对全局气化参数的影响。而且,通过执行参数数值模拟来观察初始孔隙率的效果。基于连续的模型用于解决炭颗粒内和外界层内的气化。根据Langmuir-hinshelwood(LH)机制计算CO2气化反应的内在速率。外部传质由Stefan-Maxwell关系建模,圆柱形孔插入模型(CPIM)用于粒子分子扩散。在该模型中,由于粒子内部结构的变化引起的所有效果由来自局部反应速率值计算的全局转换函数F(x)表示。在本研究中,F(x)从实验结果推导出,而不是现象学模型几乎不可能验证。用于所假设的功能F(x)的实验气化结果的最佳再现作为两个高斯函数的总和,其在气化过程中代表炭粒子随机孔结构及其动力学。比较仿真结果表明,对于低转换间隔的高斯,转换为甚至更低的较高气化温度和更高的初始孔隙率的转换值。由此,用于低转化率(大粒径)的高斯函数被解释为与大孔网络和分子扩散速率相结合的扩散限制气化制度的代表。由于Char产生加热速率导致的孔结构的修改导致第二高斯向更高的转换率的移位。因此,假设第二高斯函数对应于与颗粒的可用外表面积相关的边界层扩散控制的制度。

著录项

  • 来源
    《Fuel》 |2021年第1期|119067.1-119067.12|共12页
  • 作者单位

    Middle East Tech Univ Dept Aerosp Engn TR-06800 Ankara Turkey;

    Middle East Tech Univ Dept Mech Engn TR-06800 Ankara Turkey|CNRS Inst Combust Aerotherm Reactivite & Environm UPR3021 1C Ave Rech Sci F-45071 Orleans France;

    Middle East Tech Univ Dept Mech Engn TR-06800 Ankara Turkey;

    Middle East Tech Univ Dept Mech Engn TR-06800 Ankara Turkey|CNRS Inst Combust Aerotherm Reactivite & Environm UPR3021 1C Ave Rech Sci F-45071 Orleans France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CO2 gasification; Modeling; Lignite char; Pore structure change;

    机译:二氧化碳气化;建模;褐煤炭;孔结构变化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号