首页> 外文期刊>Fuel >Numerical investigation on abnormally elevated pressure in laboratory-scale porous media caused by depressurized hydrate dissociation
【24h】

Numerical investigation on abnormally elevated pressure in laboratory-scale porous media caused by depressurized hydrate dissociation

机译:减压水合物解离引起的实验室尺度多孔介质异常升高的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrate dissociation induced by artificial or environmental factors in submarine sediments may lead to drilling risks, submarine landslides, and the collapse of offshore platforms-all of which are associated with suddenly increased pore pressure. This study establishes a coupled model for the two-phase flow of fluids in porous media in which the pore pressure of water and gas are used as dependent variables and heat transfer and hydrate dissociation equations are combined. The simulation results of the model are consistent with Masuda's experimental dataset. A quantifiable controlling hydrate dissociation specific reaction surface area (SRSA) model and an absolute permeability model are proposed to conduct numerical simulations of laboratory-scale hydrate cores, with the aim to investigate the mechanism of hydrate dissociation-induced geological hazard initiation and a law of their evolution in sediments. The results show that i) suddenly depressurized hydrate dissociation in porous media can be divided into three phases-pressure induction, transition, and temperature-controlled-and that the first two are much shorter than the third. Moreover, the lower initial permeability results in a shorter holding period for the first stage, and the transition phase becomes indistinguishable; conversely, the larger initial permeability makes the three stages more distinguishable; ii) hardly increasing the core permeability during the intermediate stage of hydrate dissociation makes the pore pressure rebound. However, the steep increase in SRSA does not result in a significant pore gas pressure rebound; conversely, a larger SRSA does facilitate pore pressure dissipation. This work provides theoretical and laboratory-scale model analyses for the safe development of natural gas hydrates bearing in marine sediments.
机译:潜艇沉积物中的人工或环境因素诱导的水合物解离可能导致钻探风险,潜艇滑坡和海上平台的崩溃 - 所有这些都与突然增加的孔隙压力相关。该研究建立了多孔介质中流体的两相流耦合模型,其中水和气体的孔隙压力用作依赖性变量和传热和水合物解离方程。该模型的仿真结果与Masuda的实验数据集一致。提出了一种可量化的控制水合物离解特异性反应表面积(SRSA)模型和绝对渗透性模型进行实验室级水合物核心的数值模拟,目的是研究水合物解离诱导的地质灾害启动的机制和法律他们在沉积物中的演变。结果表明,I)突然减压水合物在多孔介质中的水合物解离可以分为三个相压力诱导,转变和温度控制 - 并且前两个比第三更短。此外,较低的初始渗透率导致第一阶段的较短保持时段,过渡阶段变得难以区分;相反,较大的初始渗透性使三个阶段更具区别; ii)在水合物离解期间几乎没有提高核心渗透性使孔隙压力反弹。然而,SRSA的陡峭增加不会导致显着的孔隙气体压力反弹;相反,较大的SRSA确实有助于孔隙压力耗散。这项工作提供了理论和实验室规模模型分析,用于安全开发海洋沉积物的天然气水合物。

著录项

  • 来源
    《Fuel》 |2020年第jul1期|117679.1-117679.14|共14页
  • 作者单位

    China Univ Petr East China Coll Pipeline & Civil Engn Qingdao 266580 Peoples R China;

    China Univ Petr East China Sch Petr Engn Qingdao 266580 Peoples R China;

    China Univ Petr East China Sch Petr Engn Qingdao 266580 Peoples R China;

    China Univ Petr East China Sch Petr Engn Qingdao 266580 Peoples R China;

    China Univ Petr East China Coll Pipeline & Civil Engn Qingdao 266580 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Methane hydrate; Pore pressure; Dissociation; Multiphase flow in porous;

    机译:甲烷水合物;孔隙压力;解离;多相流动;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号