...
首页> 外文期刊>Fuel >Pore-scale simulations of rarefied gas flows in ultra-tight porous media
【24h】

Pore-scale simulations of rarefied gas flows in ultra-tight porous media

机译:超紧孔介质中稀土气体流动的孔径模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

An in-depth understanding of gas transport in ultra-tight porous media is the key to quantifying flow properties of shale rocks with pore space as small as a few nanometers, where the gas rarefaction effects play a major role. As the conventional fluid mechanics theory fails to describe non-equilibrium rarefied flow, we resort to the gas kinetic theory and directly simulate gas flow inside the porous media utilising the digital images of porous media where the pore space is resolved. The Boltzmann model equation is solved by the discrete velocity method (DVM), which can accurately predict the permeability enhancement caused by rarefaction effects. Our simulations for different porous media show that the commonly-used standard lattice Boltzmann method (LBM) cannot describe rarefaction effects, although the kinetic boundary condition, which helps to capture velocity-slip, can extend the validity of the LBM to the slip flow regime. The heuristic Klinkenberg-type models proposed for all the flow regimes often involve many unknown empirical parameters, which may be calibrated by our simulations. However, these parameters are different for each porous medium and also depend on flow conditions, so these models are not of any practical use. By contrast, our kinetic solver can accurately predict apparent permeability without introducing any empirical parameters, which lays firm foundation for upscaling. As the large flow paths with least flow resistance dominate the overall permeability, the requirement on the velocity-space resolution is significantly reduced for our DVM simulations to predict accurate permeability with affordable computational costs, which offers a promising new way for digital rock analysis.
机译:对超紧孔介质中的气体输送的深入了解是量化页岩岩石与孔隙空间的流动性,如几个纳米,气体稀疏效应起到重要作用。随着传统的流体力学理论未能描述非平衡稀土流量,我们采用气体动力学理论,并利用多孔介质的数字图像直接模拟多孔介质内的气流。通过离散速度方法(DVM)解决了Boltzmann模型方程,其可以精确地预测由稀疏效应引起的渗透性增强。我们对不同多孔介质的模拟表明,普通使用的标准格子Boltzmann方法(LBM)不能描述稀疏效应,尽管有助于捕获速度滑动的动力学边界条件可以将LBM的有效性延长到滑动流动状态。为所有流动制度提出的启发式Klinkenberg型模型通常涉及许多未知的经验参数,这可能会被我们的模拟校准。然而,这些参数对于每个多孔介质不同,也取决于流动条件,因此这些模型不具有任何实际用途。相比之下,我们的动力学求解器可以准确地预测明显的渗透率而不引入任何经验参数,这为升高而奠定了坚固的基础。随着具有最小流动阻力的大流动路径主导整体渗透性,对于我们的DVM模拟来说,对速度空间分辨率的要求显着降低,以预测具有价格实惠的计算成本的准确渗透性,这为数字岩石分析提供了一个有希望的新方法。

著录项

  • 来源
    《Fuel》 |2019年第1期|341-351|共11页
  • 作者单位

    Univ Strathclyde Dept Mech & Aerosp Engn James Weir Fluids Lab Glasgow G1 1XJ Lanark Scotland;

    Univ Strathclyde Dept Mech & Aerosp Engn James Weir Fluids Lab Glasgow G1 1XJ Lanark Scotland|Huazhong Univ Sci & Technol Sch Energy & Power State Key Lab Coal Combust Wuhan 430074 Hubei Peoples R China;

    Univ Strathclyde Dept Mech & Aerosp Engn James Weir Fluids Lab Glasgow G1 1XJ Lanark Scotland;

    Univ Strathclyde Dept Mech & Aerosp Engn James Weir Fluids Lab Glasgow G1 1XJ Lanark Scotland;

    Huazhong Univ Sci & Technol Sch Energy & Power State Key Lab Coal Combust Wuhan 430074 Hubei Peoples R China;

    Heriot Watt Univ Sch Energy Geosci Infrastruct & Soc Inst Petr Engn Edinburgh EH14 4AS Midlothian Scotland;

    Univ Strathclyde Dept Mech & Aerosp Engn James Weir Fluids Lab Glasgow G1 1XJ Lanark Scotland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Rarefied gas dynamics; Tight porous media; Permeability correction; Shale gas;

    机译:稀有的气体动力学;紧密介质;渗透校正;页岩气;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号