首页> 外文期刊>Fuel >Experimental and mathematical modeling studies on foamy oil stability using a heavy oil-CO_2 system under reservoir conditions
【24h】

Experimental and mathematical modeling studies on foamy oil stability using a heavy oil-CO_2 system under reservoir conditions

机译:稠油-CO_2系统在储层条件下泡沫油稳定性的实验和数学模型研究

获取原文
获取原文并翻译 | 示例
           

摘要

This study experimentally and mathematically investigated the foamy oil stability of a heavy oil-CO2 system. Experimentally, a new test method employing a gas cap was applied to avoid the effect of oil coating. In total, seven experiments were carried out for the heavy oil-CO2 system, using the constant composition expansion process in a pressure/volume/temperature cell under different pressure depletion rates (1, 2, 4, 8, 16, 24, and 32 kPa/min). Foamy oil stability was monitored for each test, and phase behavior differences were analyzed among the different pressure depletion rates. Experimental results indicate that pseudo-bubble-point pressure decreases with increased pressure depletion rate, and the maximum relative volume of foamy oil increases with increased pressure depletion rate. This work further performed a mathematical modeling study, developing a new dynamic reaction rate model to history-match the foamy-oil-stability experimental results. A First-order Reaction was applied for the both gas transfer processes (solution gas transfers to dispersed gas and dispersed gas transfers to free gas). The mathematical model was developed to simulate changes of foamy oil volume, the reaction rate constants k(1) (indicating gas phase transfer rate from solution gas to dispersed gas) and k(2) (indicating gas phase transfer rate from dispersed gas to free gas) were determined using the developed model, and trends were identified for the reaction rate constants changing with pressure depletion rates. The mathematical modeling study shows that (1) reaction rate constants k(1) and k(2) increase with increased pressure depletion rate on the order of 0.001 min(-1); (2) k(2) is much more sensitive than k(1); and (3) pressure depletion rate can be optimized to achieve more stable foamy oil behavior.
机译:这项研究通过实验和数学方法研究了重油-CO2系统的泡沫油稳定性。实验上,采用了一种采用气帽的新测试方法来避免涂油的影响。总共对重油-CO2系统进行了七个实验,在压力/体积/温度单元中,在不同的压力消耗率(1、2、4、8、16、24和32的情况下,使用恒定的组分膨胀过程) kPa / min)。每次测试都要监测泡沫油的稳定性,并分析不同压力消耗率之间的相行为差异。实验结果表明,假泡点压力随压力消耗率的增加而减小,而泡沫油的最大相对体积随压力消耗率的增加而增大。这项工作进一步进行了数学建模研究,开发了一种新的动态反应速率模型,以与泡沫油稳定性实验结果进行历史匹配。对这两种气体转移过程都进行了一级反应(溶液气体转移为分散气体,而分散气体转移为游离气体)。建立了数学模型以模拟泡沫油体积,反应速率常数k(1)(指示从溶液气体到分散气体的气相转移速率)和k(2)(指示从分散气体到游离气体的气相转移速率)的变化。使用开发的模型确定气体,并确定随压力耗尽率而变化的反应速率常数趋势。数学模型研究表明:(1)反应速率常数k(1)和k(2)随着压力消耗速率的增加而增加,约为0.001 min(-1); (2)k(2)比k(1)敏感得多; (3)可以优化压力消耗率,以实现更稳定的泡沫油行为。

著录项

  • 来源
    《Fuel》 |2020年第15期|116771.1-116771.13|共13页
  • 作者单位

    Southwest Petr Univ State Key Lab Oil & Gas Reservoir Geol & Exploita Chengdu 610500 Sichuan Peoples R China|Univ Regina Petr Syst Engn Fac Engn & Appl Sci Regina SK S4S 0A2 Canada;

    Univ Regina Petr Syst Engn Fac Engn & Appl Sci Regina SK S4S 0A2 Canada;

    Southwest Petr Univ State Key Lab Oil & Gas Reservoir Geol & Exploita Chengdu 610500 Sichuan Peoples R China;

    Stanford Univ Energy Resources Engn Stanford CA 94305 USA;

    China Univ Geosci Fac Earth Resources Wuhan 430074 Hubei Peoples R China;

    CNPC Xibu Drilling Engn Co Ltd Karamay Drilling Co Karamay 834009 Xinjiang Peoples R China;

    Southwest Petr Univ State Key Lab Oil & Gas Reservoir Geol & Exploita Chengdu 610500 Sichuan Peoples R China|Chongqing Univ Sci Technol Sch Petr Engn Chongqing 401331 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mathematical modeling; Foamy oil stability; Heavy oil-CO2 system; Pressure depletion; Reservoir condition;

    机译:数学建模;泡沫油稳定性;重油-二氧化碳系统;压力耗竭;储层状况;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号