...
首页> 外文期刊>Fuel >Biomass char particle surface area and porosity dynamics during gasification
【24h】

Biomass char particle surface area and porosity dynamics during gasification

机译:气化过程中生物质炭颗粒表面积和孔隙率动态

获取原文
获取原文并翻译 | 示例

摘要

Experimental measurements of industrially relevant biomass char particles (12.5 mm and smaller) undergoing kinetics-limited gasification reactions with CO2 and H2O reveal how porosity and surface area change with char conversion. Reactant concentrations range from 0 to 90% CO2 and 0-50% H2O, including mixtures of both reactants. Reactor temperatures range from 1150 degrees C to 1350 degrees C. Particle types include wood (poplar), an herbaceous energy crop (switch grass), and an agricultural residue (corn stover). The data include measurements of particle size, shape, and mass as essentially continuous functions of time combined with discrete measurements of surface area and porosity and provide a robust data set for comparison.Theoretical predictions of porosity from standard models do not adequately describe the experimental trends. Total surface area increases slightly with conversion, with most of the increase in the largest pores but most of the surface area in the small pores. Porosity also increases uniformly with conversion center dot H2O, CO2 and blended gasification environments produce qualitatively similar surface area and porosity data over wide ranges of reactant concentrations when plotted against conversion. Char particle diameters slightly decrease during these kinetically controlled reactions, in part because of sintering and in part because the reaction is endothermic and creates a decreasing particle temperature gradient toward the particle center. Therefore, the particle center reacts more slowly than the comparatively warmer char surface. An abrupt change in char diameter occurs at conversions greater than 99.5% associated with residual ash sintering. SEM images qualitatively confirm the quantitative measurements and show that the biomass microstructure remains easily recognizable through essentially the entire conversion process.The primary conclusions indicate that (1) the vascular structure appears to have a major role in particle reactivity, is preserved during essentially the entire char conversion history, and is not captured by BET or similar analysis techniques, (2) the pore models developed for coal and other chars do not describe and cannot be adjusted to reasonably describe the development of surface area observed in these experiments, and (3) the great majority of the surface area is in the nanopores which do not change at all during conversion and appear to have no influence on char reactivity. The larger pores, and especially the vascular structure, primarily contribute to reactive surface area.
机译:对与工业相关的生物质炭颗粒(12.5毫米及以下)进行动力学限制的气化反应,与CO2和H2O进行实验测量,揭示了孔隙率和表面积随炭转化率如何变化。反应物浓度范围为0至90%CO2和0-50%H2O,包括两种反应物的混合物。反应器温度范围为1150摄氏度至1350摄氏度。颗粒类型包括木材(白杨),草本能源作物(转草)和农业残留物(玉米秸秆)。数据包括作为时间的基本连续函数的粒度,形状和质量的测量值,以及离散的表面积和孔隙率测量值,并提供了可靠的数据集进行比较。标准模型对孔隙率的理论预测不足以描述实验趋势。总表面积随转化率略有增加,大部分增加在最大的孔中,但大部分表面积在小孔中。孔隙率也随着转化中心点H2O,CO2的增加而均匀增加,当针对转化率绘图时,混合气化环境可在宽范围的反应物浓度上产生定性相似的表面积和孔隙率数据。在这些动力学控制的反应过程中,炭颗粒直径略有减小,部分是由于烧结造成的,部分是由于反应是吸热的,并导致朝着颗粒中心的颗粒温度梯度减小。因此,粒子中心的反应比相对较暖的炭表面反应更慢。炭直径的突然变化发生在与残留灰分烧结相关的大于99.5%的转化率上。 SEM图像定性地证实了定量测量结果,并显示出生物质的微观结构在整个转化过程中仍易于识别。主要结论表明:(1)血管结构似乎在颗粒反应性中起主要作用,在整个过程中均得以保留。炭的转化历史,并且未被BET或类似分析技术捕获,(2)为煤和其他炭开发的孔隙模型没有描述,也无法进行调整以合理描述在这些实验中观察到的表面积的发展,并且(3 )大部分表面积在纳米孔中,这些纳米孔在转化过程中根本不发生变化,并且对炭反应性没有影响。较大的孔,尤其是血管结构,主要有助于反应性表面积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号