首页> 外文期刊>Fuel >The dynamic behavior of gas hydrate dissociation by heating in tight sandy reservoirs: A molecular dynamics simulation study
【24h】

The dynamic behavior of gas hydrate dissociation by heating in tight sandy reservoirs: A molecular dynamics simulation study

机译:致密砂质油藏加热加热分解天然气水合物的动力学行为:分子动力学模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

Knowledge on the kinetics of gas hydrate dissociation in microporous sediments is very important for developing safe and efficient approaches to gas recovery from natural gas hydrate (NGH) deposits. Herein, molecular dynamics (MD) simulations are used to study the dissociation kinetics in microporous sediments. The hydrate phase occupies a confined sandy nanopore formed by two hydroxylated silica surfaces with a buffering water layer between the hydrate and silica phase, meanwhile, this system is in contact with the bulk phase outside the pore. The hydrates in this sediment system dissociate layer-by-layer in a shrinking core manner. The released methane molecules aggregate and eventually evolve into nanobubbles, most of which are spherical cap-shaped on the hydroxylated silica surfaces. At high initial temperatures, a faster decomposition of the hydrate phase is observed, however, fewer methane molecules migrate to the bulk phase from the pore phase. These phenomena may occur because more methane molecules are released from the hydrate phase and facilitate the formation of nanobubbles with large heat injection; these nanobubbles can stably adsorb on the surface of silica and capture the surrounding methane molecules, thereby decreasing the number of methane molecules in the water phase. In addition, the injection speed of heat flow should be significantly increased at high dissociation temperatures when using the thermal stimulation method to extract gas from hydrates in tight sediments. This study provides molecular level insight into the kinetic mechanism of hydrate dissociation and theoretical guidance for gas production by thermal injection from sediments with low permeabilities.
机译:了解微孔沉积物中气体水合物分解动力学的知识对于开发安全有效的方法来从天然气水合物(NGH)沉积物中回收气体非常重要。在本文中,使用分子动力学(MD)模拟来研究微孔沉积物中的离解动力学。水合物相占据由两个羟基化的二氧化硅表面形成的受限的沙状纳米孔,在水合物和二氧化硅相之间具有缓冲水层,与此同时,该体系与孔外的本体相接触。该沉积物系统中的水合物以收缩的核心方式逐层解离。释放的甲烷分子聚集并最终演变成纳米气泡,其中大多数在羟基化二氧化硅表面上呈球形帽状。在较高的初始温度下,观察到水合物相的分解更快,但是,较少的甲烷分子从孔隙相迁移到本体相。之所以会出现这些现象,是因为有更多的甲烷分子从水合物相中释放出来,并通过大量的热注入促进了纳米气泡的形成。这些纳米气泡可以稳定地吸附在二氧化硅表面并捕获周围的甲烷分子,从而减少水相中甲烷分子的数量。此外,当使用热刺激方法从致密沉积物中的水合物中提取气体时,在高解离温度下,应显着提高热流的注入速度。这项研究为水合物解离的动力学机理提供了分子水平的见解,并为低渗透率沉积物的热注入生产气体提供了理论指导。

著录项

  • 来源
    《Fuel》 |2019年第15期|116106.1-116106.9|共9页
  • 作者单位

    China Univ Geosci Natl Ctr Int Res Deep Earth Drilling & Resource D Fac Engn Wuhan 430074 Hubei Peoples R China;

    China Univ Geosci Natl Ctr Int Res Deep Earth Drilling & Resource D Fac Engn Wuhan 430074 Hubei Peoples R China|Qingdao Natl Lab Marine Sci & Technol Lab Marine Mineral Resources Qingdao 266237 Shandong Peoples R China;

    Minist Land & Resources Guangzhou Marine Geol Survey Guangzhou 510760 Guangdong Peoples R China;

    Xiamen Univ Res Inst Biomimet & Soft Matter Jiujiang Res Inst Dept Phys Xiamen 361005 Fujian Peoples R China|Xiamen Univ Fujian Prov Key Lab Soft Funct Mat Res Xiamen 361005 Fujian Peoples R China;

    Delft Univ Technol Proc & Energy Dept Leeghwaterstr 39 NL-2628CB Delft Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Methane hydrate; Molecular simulation; Dissociation kinetics; Nanobubbles; Tight sandy sediments; Heat injection;

    机译:甲烷水合物;分子模拟解离动力学;纳米气泡;致密的沙质沉积物;热注射;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号