首页> 外文期刊>Fuel >Analytical modelling of wettability alteration-induced micro-fractures during hydraulic fracturing in tight oil reservoirs
【24h】

Analytical modelling of wettability alteration-induced micro-fractures during hydraulic fracturing in tight oil reservoirs

机译:致密油藏水力压裂过程中润湿性变化引起的微裂缝解析模型

获取原文
获取原文并翻译 | 示例
           

摘要

Hydraulic fracturing technique is of vital importance to increase fuel energy, in particular to unlock the unconventional resources (e.g., tight oil, shale oil and shale gas reservoirs). However, low recovery of hydraulic fracturing fluid has been in the centre of attention from both technical and environmental perspectives in the last decade. To gain a deeper understanding of controlling factor(s) over low recovery of hydraulic fracturing fluids, we hypothesized that hydraulic fracturing fluid (usually low salinity water) increases hydrophilicity of reservoir rocks, thus stress intensity factor, which in return facilitates in-situ micro-fractures extension. To test this hypothesis, we developed a physical model with consideration of capillary pressure which is associated with wettability. Moreover, we calculated stress intensity factor using our previous contact angle results with presence of low salinity and high salinity water [Xie et al., The low salinity effect at high temperatures, Fuel, 200 (2017) 419-426]. Furthermore, we examined the effect of tip width of in-situ micro-fractures, distance from main hydraulic fractures on micro-fractures extension at different wetting systems.Our results demonstrate that low salinity water indeed increases stress intensity factor as compared to high salinity water due to the wettability alteration. Our results also show that the length of micro-fracture extension increases up to 15 times than the original micro-fracture length due to the wettability alteration when the tip width of in-situ micro-fracture reaches 10 nm. This likely explains the extension of micro-fractures due to water uptake by shale. Moreover, micro-fracture extension is more pronounced for micro-fractures located nearby a wellbore, suggesting that a huge amount of hydraulic fluids likely remains at the vicinity of the wellbore. Knowing wettability thus stress intensity factor, the disappearance of hydraulic fracturing fluids and EOR potential in tight sandstone and shale reservoirs can therefore be quantified.
机译:水力压裂技术对于增加燃料能量,特别是释放非常规资源(例如致密油,页岩油和页岩气储层)至关重要。然而,在过去的十年中,从技术和环境的角度来看,水力压裂液的低回收率一直是关注的焦点。为了对水力压裂液低采收率的控制因素有更深入的了解,我们假设水力压裂液(通常是低盐度水)增加了储集岩的亲水性,从而增加了应力强度因子,从而有利于微地压。断裂扩展。为了检验该假设,我们考虑了与润湿性相关的毛细压力建立了物理模型。此外,我们使用先前的接触角结果在存在低盐度和高盐度水的情况下计算了应力强度因子[Xie等人,高温下的低盐度效应,Fuel,200(2017)419-426]。此外,我们研究了在不同的润湿系统中,原位微裂缝的尖端宽度,与主要水力裂缝的距离对微裂缝延伸的影响。结果表明,与高盐度水相比,低盐度水确实增加了应力强度因子由于润湿性改变。我们的结果还表明,由于当原位微裂缝的尖端宽度达到10 nm时的可湿性改变,微裂缝延伸的长度比原始微裂缝长度增加了15倍。这可能解释了页岩吸水导致微裂缝的扩展。此外,对于位于井眼附近的微裂缝,微裂缝扩展更为明显,这表明大量的液压流体可能残留在井眼附近。因此,知道润湿性和应力强度因数,就可以对致密砂岩和页岩储层中水力压裂液的消失和EOR势进行量化。

著录项

  • 来源
    《Fuel》 |2019年第1期|434-440|共7页
  • 作者单位

    China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China;

    Curtin Univ, Dept Petr Engn, 26 Dick Perry Ave, Kensington, NSW 6151, Australia;

    Curtin Univ, Dept Petr Engn, 26 Dick Perry Ave, Kensington, NSW 6151, Australia;

    China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China;

    Curtin Univ, Dept Petr Engn, 26 Dick Perry Ave, Kensington, NSW 6151, Australia;

    Curtin Univ, Dept Petr Engn, 26 Dick Perry Ave, Kensington, NSW 6151, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydraulic fracturing fluids; Wettability; Contact angle; Rock strength factor; Geo-mechanical modelling;

    机译:水力压裂液;润湿性;接触角;岩石强度因子;地球力学模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号