首页> 外文期刊>Frontiers in energy >Geometric optimization model for the solar cavity receiver with helical pipe at different solar radiation
【24h】

Geometric optimization model for the solar cavity receiver with helical pipe at different solar radiation

机译:不同太阳辐射下带螺旋管的太阳腔接收器的几何优化模型

获取原文
获取原文并翻译 | 示例
       

摘要

In consideration of geometric parameters, several researches have already optimized the thermal efficiency of the cylindrical cavity receiver. However, most of the optimal results have been achieved at a fixed solar radiation. At different direct normal irradiance (DNI), any single optimal result may not be suitable enough for different regions over the world. This study constructed a 3-D numerical model of cylindrical cavity receiver with DNI variation. In the model of a cylindrical cavity receiver containing a helical pipe, the heat losses of the cavity and heat transfer of working medium were also taken into account. The simulation results show that for a particular DNI in the range of 400 W/m(2) to 800 W/m(2), there exists a best design for achieving a highest thermal efficiency of the cavity receiver. Besides, for a receiver in constant geometric parameters, the total heat losses increases dramatically with the DNI increasing in that range, as well as the temperature of the working medium. The thermal efficiency presented a different variation tendency with the heat losses, which is 2.45% as a minimum decline. In summary, this paper proposed an optimization method in the form of a bunch of fitting curves which could be applied to receiver design in different DNI regions, with comparatively appropriate thermal performances.
机译:考虑到几何参数,一些研究已经优化了圆柱形空腔接收器的热效率。但是,大多数最佳结果是在固定的太阳辐射下实现的。在不同的直接法向辐照度(DNI)下,任何单个最佳结果可能都不足以适合世界各地的不同区域。本研究建立了具有DNI变化的圆柱腔接收器的3-D数值模型。在包含螺旋管的圆柱形空腔接收器模型中,还考虑了空腔的热损失和工作介质的热传递。仿真结果表明,对于在400 W / m(2)至800 W / m(2)范围内的特定DNI,存在一种用于实现空腔接收器最高热效率的最佳设计。此外,对于具有恒定几何参数的接收器,随着DNI在该范围内以及工作介质温度的增加,总的热损耗会急剧增加。热效率随热损失呈现出不同的变化趋势,最小下降为2.45%。综上所述,本文提出了一种拟合曲线形式的优化方法,该方法可以应用于具有不同热性能的不同DNI区域的接收机设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号