...
首页> 外文期刊>Fresenius Environmental Bulletin >BIOLOGY-BASED DOSE-RESPONSE MODELS FOR HEALTH RISK ASSESSMENT OF CHEMICAL MIXTURES
【24h】

BIOLOGY-BASED DOSE-RESPONSE MODELS FOR HEALTH RISK ASSESSMENT OF CHEMICAL MIXTURES

机译:基于生物学的化学混合物健康风险评估的剂量反应模型

获取原文
获取原文并翻译 | 示例

摘要

Currently risk assessment tackles chemicals as single substances affecting individual health endpoints while, in reality, man is exposed to mixtures of chemicals present in the environment and consumer products. This may result in lower or greater toxicity of mixtures than what would be expected by summing the toxicity of individual chemicals. The extent of the change in tissue dose depends on the concentrations of all components and the mechanism(s) of biochemical interaction among them. Physiologically based pharmacokinetic models (PBPK) are mathematical descriptions of absorption, distribution, metabolism and elimination of chemicals in the body, which can be particularly useful in addressing environmental mixture toxicity. In this work we present a pharmacokinetic/pharmacodynamic (PBPK/PD) model for benzene, toluene, ethylbenzene and all xylenes that accounts for the interactions among these chemicals at the sites of metabolism. The PBPK/PD model was coupled to a model of the metabolic chain of benzene to estimate the biologically effective dose of benzene metabolites, the main culprits for benzene toxicity. This was linked to a pathology model to associate the probability of leukemia risk to the total concentration of benzene metabolites in urine. This model was applied to exposure scenarios based on environmental concentrations of the four VOCs measured in Thessaloniki, Greece. Our results show that combined exposure modifies health risk estimates even at low doses, after lifelong exposure to VOCs. The current WHO methodology for ambient air guidelines, based primarily on epidemiological evidence, should be enriched to take into account the toxicity pathways and mechanisms of environmental mixtures.
机译:当前,风险评估将化学药品作为影响个体健康终点的单一物质处理,而实际上,人类则暴露于环境和消费品中存在的化学药品的混合物中。这可能导致混合物的毒性低于或大于混合物中个别化学品的毒性所预期的毒性。组织剂量变化的程度取决于所有成分的浓度以及它们之间生化相互作用的机制。基于生理学的药代动力学模型(PBPK)是对人体中化学物质的吸收,分布,代谢和消除的数学描述,这在解决环境混合物毒性方面特别有用。在这项工作中,我们提出了苯,甲苯,乙苯和所有二甲苯的药代动力学/药效学(PBPK / PD)模型,该模型解释了这些化学物质在新陈代谢部位之间的相互作用。 PBPK / PD模型与苯的代谢链模型耦合,以估算苯代谢物的生物有效剂量,苯代谢物是苯毒性的主要元凶。这与将白血病风险的可能性与尿液中苯代谢物的总浓度相关联的病理模型联系在一起。基于在希腊萨洛尼卡测量的四种挥发性有机化合物的环境浓度,将该模型应用于暴露场景。我们的结果表明,终身接触VOC后,即使在低剂量下,联合接触也会改变健康风险估计。应充实当前主要基于流行病学证据的世界卫生组织关于周围空气准则的方法,以考虑到环境混合物的毒性途径和机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号