...
首页> 外文期刊>Flow, Turbulence and Combustion >Large Eddy Simulation and PIV Measurements of Unsteady Premixed Flames Accelerated by Obstacles
【24h】

Large Eddy Simulation and PIV Measurements of Unsteady Premixed Flames Accelerated by Obstacles

机译:障碍物加速的不稳定非预混火焰的大涡模拟和PIV测量

获取原文
获取原文并翻译 | 示例

摘要

In gas explosions, the unsteady coupling of the propagating flame and the flow field induced by the presence of blockages along the flame path produces vortices of different scales ahead of the flame front. The resulting flame–vortex interaction intensifies the rate of flame propagation and the pressure rise. In this paper, a joint numerical and experimental study of unsteady premixed flame propagation around three sequential obstacles in a small-scale vented explosion chamber is presented. The modeling work is carried out utilizing large eddy simulation (LES). In the experimental work, previous results (Patel et al., Proc Combust Inst 29:1849–1854, 2002) are extended to include simultaneous flame and particle image velocimetry (PIV) measurements of the flow field within the wake of each obstacle. Comparisons between LES predictions and experimental data show a satisfactory agreement in terms of shape of the propagating flame, flame arrival times, spatial profile of the flame speed, pressure time history, and velocity vector fields. Computations through the validated model are also performed to evaluate the effects of both large-scale and sub-grid scale (SGS) vortices on the flame propagation. The results obtained demonstrate that the large vortical structures dictate the evolution of the flame in qualitative terms (shape and structure of the flame, succession of the combustion regimes along the path, acceleration-deceleration step around each obstacle, and pressure time trend). Conversely, the SGS vortices do not affect the qualitative trends. However, it is essential to model their effects on the combustion rate to achieve quantitative predictions for the flame speed and the pressure peak.
机译:在瓦斯爆炸中,由于火焰沿路径的阻塞而引起的传播火焰与流场的不稳定耦合会在火焰前沿之前产生不同比例的涡旋。由此产生的火焰-涡旋相互作用增强了火焰传播的速度和压力上升。本文提出了一个联合数值模拟和实验研究,研究了不稳定的预混火焰在小型排爆爆炸室内绕三个顺序障碍物的传播。建模工作是利用大型涡流仿真(LES)进行的。在实验工作中,先前的结果(Patel等人,Proc Combust Inst 29:1849-1854,2002)被扩展为包括同时在每个障碍物后流场进行火焰和粒子图像测速(PIV)测量。 LES预测与实验数据之间的比较表明,在传播火焰的形状,火焰到达时间,火焰速度的空间分布,压力时间历史和速度矢量场方面,令人满意的一致性。还通过经过验证的模型进行计算,以评估大规模和次网格规模(SGS)旋涡对火焰传播的影响。获得的结果表明,大的旋涡结构定性地指示了火焰的演变(火焰的形状和结构,沿路径的燃烧方式的连续性,围绕每个障碍物的加速-减速步长以及压力时间趋势)。相反,SGS涡旋不影响定性趋势。但是,必须对它们对燃烧速率的影响进行建模,以实现火焰速度和压力峰值的定量预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号