...
首页> 外文期刊>Expert systems with applications >Classifying Periodic Astrophysical Phenomena from non-survey optimized variable-cadence observational data
【24h】

Classifying Periodic Astrophysical Phenomena from non-survey optimized variable-cadence observational data

机译:从非调查优化的可变节目观测数据进行分类定期天体物理现象

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Modern time-domain astronomy is capable of collecting a staggeringly large amount of data on millions of objects in real time. Therefore, the production of methods and systems for the automated classification of time-domain astronomical objects is of great importance. The Liverpool Telescope has a number of wide-field image gathering instruments mounted upon its structure, the Small Telescopes Installed at the Liverpool Telescope. These instruments have been in operation since March 2009 gathering data of large areas of sky around the current field of view of the main telescope generating a large dataset containing millions of light sources. The instruments are inexpensive to run as they do not require a separate telescope to operate but this style of surveying the sky introduces structured artifacts into our data due to the variable cadence at which sky fields are resampled. These artifacts can make light sources appear variable and must be addressed in any processing method.The data from large sky surveys can lead to the discovery of interesting new variable objects. Efficient software and analysis tools are required to rapidly determine which potentially variable objects are worthy of further telescope time. Machine learning offers a solution to the quick detection of variability by characterising the detected signals relative to previously seen exemplars. In this paper, we introduce a processing system designed for use with the Liverpool Telescope identifying potentially interesting objects through the application of a novel representation learning approach to data collected automatically from the wide-field instruments. Our method automatically produces a set of classification features by applying Principal Component Analysis on set of variable light curves using a piecewise polynomial fitted via a genetic algorithm applied to the epoch-folded data. The epoch-folding requires the selection of a candidate period for variable light curves identified using a genetic algorithm period estimation method specifically developed for this dataset A Random Forest classifier is then used to classify the learned features to determine if a light curve is generated by an object of interest. This system allows for the telescope to automatically identify new targets through passive observations which do not affect dayto-day operations as the unique artifacts resulting from such a survey method are incorporated into the methods.We demonstrate the power of this feature extraction method compared to feature engineering performed by previous studies by training classification models on 859 light curves of 12 known variable star classes from our dataset. We show that our new features produce a model with a superior mean cross-validation F1 score of 0.4729 with a standard deviation of 0.0931 compared with the engineered features at 0.3902 with a standard deviation of 0.0619. We show that the features extracted from the representation learning are given relatively high importance in the final classification model. Additionally, we compare engineered features computed on the interpolated polynomial fits and show that they produce more reliable distributions than those fit to the raw light curve when the period estimation is correct. (C) 2019 Elsevier Ltd. All rights reserved.
机译:现代时域天文学能够实时地收集数百万物体的大量数据。因此,为时域天文对象自动分类的方法和系统的生产具有重要意义。利物浦望远镜有许多安装在其结构上的宽野图像采集仪器,该小望远镜安装在利物浦望远镜。这些仪器自2009年3月以来一直在运行,从主望远镜的主视野周围收集大面积的天空数据,产生包含数百万光源的大型数据集。仪器廉价地运行,因为它们不需要单独的望远镜操作,但这种测量风格天空将结构化伪像引入我们的数据,因为天空领域重新采样。这些工件可以使光源出现变量,并且必须以任何处理方法寻址。来自大型天空调查的数据可能导致发现有趣的新变量对象。需要高效的软件和分析工具来快速确定哪些潜在的可变物体值得进一步望远镜时间。机器学习通过特征在于相对于先前看到的示例来提供快速检测可变性的解决方案。在本文中,我们介绍了一种用于利用利物浦望远镜使用的处理系统,通过应用新颖的表示学习方法来自动地从广域乐器自动收集的数据来识别潜在的有趣物体。我们的方法通过使用应用于跨跨折叠数据的遗传算法的分段多项式应用了一组可变光曲线的主成分分析来自动产生一组分类特征。 epoch折叠需要选择使用专门为该数据集开发的遗传算法周期估计方法的可变光曲线的候选周期,然后使用随机林分类器来分类学习功能,以确定是否由一个灯曲线感兴趣的对象。该系统允许望远镜通过无源观测自动识别新目标,这不会影响日常业务,因为这种调查方法所产生的独特伪像并入方法中。我们展示了与特征相比该特征提取方法的功率通过以前通过我们数据集的12名已知可变星级级别的859个光曲线进行培训分类模型进行的工程。我们表明,我们的新功能产生了一个型号的型号,其平均交叉验证F1得分为0.4729,标准偏差为0.0931,与0.3902的工程特征相比,标准偏差为0.0619。我们表明,在最终分类模型中,从表示学习中提取的特征相对较高。此外,我们比较在内插多项式上计算的工程特征,并表明它们产生比时段估计正确的原始光线曲线的分布更可靠的分布。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号