...
首页> 外文期刊>Expert Systems with Application >Approximate Dantzig-Wolfe decomposition to solve a class of variational inequality problems with an illustrative application to electricity market models
【24h】

Approximate Dantzig-Wolfe decomposition to solve a class of variational inequality problems with an illustrative application to electricity market models

机译:近似Dantzig-Wolfe分解可解决一类变分不平等问题,并将其示例性地应用于电力市场模型

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, we develop a new Approximate Dantzig-Wolfe (ADW) decomposition method for variational inequalities (VI) based on the work by Chung and Fuller (2010) and Celebi and Fuller (2013). The decomposed VI consists of one approximate subproblem, which is nonlinear programming (NLP) or linear programming (LP) and one approximate master problem, which is an NLP. Note that we can have many approximate subproblems depending upon the approximation method and the structure of the constraint set. On the other hand, if the VI mapping in the approximate master problem is equal to that in the iterative methods for solving VI, then the ADW-VI simply consists of the computational sequence of solving NLP (or LP) subproblem(s) and NLP master problem in an iterative manner. That is, the iterative methods for VI and the DW decomposition method are combined into a single iterative loop. The details of the method are presented as well as an extension of the theory from Chung and Fuller (2010) and Celebi and Fuller (2013). In addition, numerical results are provided based on two time-of-use pricing models of Ontario electricity market in Celebi and Fuller (2013), but for which the new master problem approximation different from Celebi and Fuller (2013) has been used. These results validate ADW-VI, and in some computational instances, indicates dramatic improvements in solution times as compared to reference methods, like diagonalization method of Dafermos (1983). Another set of numerical results, based on a simple electricity market, illustrates that ADW-VI can be faster than the PATH solver when solving large-scale problem instances. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在这项研究中,我们基于Chung和Fuller(2010)以及Celebi和Fuller(2013)的工作,开发了一种新的近似Dantzig-Wolfe(ADW)分解不等式(VI)分解方法。分解后的VI包含一个近似子问题,即非线性规划(NLP)或线性规划(LP),以及一个近似主问题,即NLP。注意,根据近似方法和约束集的结构,我们可以有许多近似子问题。另一方面,如果近似主问题中的VI映射与求解VI的迭代方法中的VI映射相等,则ADW-VI仅由求解NLP(或LP)子问题和NLP的计算序列组成以迭代方式解决问题。也就是说,VI的迭代方法和DW分解方法被组合到单个迭代循环中。本文介绍了该方法的详细信息,以及Chung和Fuller(2010)以及Celebi和Fuller(2013)对该理论的扩展。此外,基于Celebi和Fuller(2013)的安大略省电力市场的两个使用时间定价模型提供了数值结果,但为此使用了不同于Celebi和Fuller(2013)的新的主问题近似值。这些结果验证了ADW-VI,并且在某些计算实例中,与参考方法(如Dafermos(1983)的对角化方法)相比,表明求解时间有了显着改善。基于简单的电力市场的另一组数值结果表明,在解决大规模问题实例时,ADW-VI可以比PATH解算器更快。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号