首页> 外文期刊>Experimental Brain Research >Deriving angular displacement from optic flow: a fMRI study
【24h】

Deriving angular displacement from optic flow: a fMRI study

机译:从光流推导角位移:fMRI研究

获取原文
获取原文并翻译 | 示例
           

摘要

Using fMRI we wished to identify brain areas subserving the conversion of velocity signals into estimates of self-displacement (velocity-to-displacement integration, VDI), a function which is a prerequisite for the ability to navigate without landmarks. As real self-motion is not feasible in an fMRI environment, we presented subjects with a ride along a circular path in virtual reality devoid of usable landmarks. We asked subjects to try and feel as if actually moving in the scene and to either detect and count changes in driving speed (V-task) or to estimate the angular displacement achieved during a ride (D-task). We examined the contrast between these two tasks with regard to two hypothesised key functions for VDI: (1) evoking an internal image of the self in space and (2) manipulating this image in proportion to perceived velocity at the pace of a time base. The BOLD-responses during both tasks were fairly similar showing activity with right hemispheric dominance in a large parieto-temporo-occipital area as well as in frontal and prefrontal areas. Contrast D–V revealed a mainly parieto-hippocampal network comprising precuneus and inferior parietal cortex, posterior parieto-occipital cortex, retrosplenial cortex and the hippocampal region, but also right superior frontal gyrus and right cerebellum. It can be viewed as a blend of networks known to be involved in mental rotation and in navigation, except for the lack of ventral premotor and prefrontal activity. A tentative interpretation proposes a scenario where precuneus, together perhaps with posterior parieto-occipital cortex, provides the postulated mental image of the self in space and uses it to interpret results computed in the hippocampal region. In the hippocampal region, VDI proper would take place based on a map of spatial orientation, with the appropriate time scale being an intrinsic property. In addition, a dedicated time keeping system in inferior parietal cortex appears to be involved. Keywords fMRI - Optic flow - Virtual reality - Time integral of velocity - Path integration - Displacement perception - Parietal cortex - Hippocampus
机译:我们希望使用fMRI来识别将速度信号转换为自我位移(速度到位移积分,VDI)估计值的大脑区域,该功能是无界标导航能力的前提。由于在fMRI环境中无法实现真实的自我运动,因此我们向受试者介绍了在虚拟现实中没有可用地标的情况下沿着圆形路径行驶的过程。我们要求受试者试着感觉好像在场景中确实在运动,并检测和计算行驶速度的变化(V任务)或估算乘车过程中达到的角位移(D任务)。我们针对VDI的两个假设关键功能检查了这两个任务之间的对比:(1)唤起空间中自我的内部图像;(2)在时基速度下按感知速度成比例地操纵此图像。两项任务中的BOLD响应都非常相似,显示在大的顶颞枕区域以及额叶和额叶前区域中,右半球占优势。对比度D–V显示主要由顶突和顶下皮质,顶枕后皮质,脾后皮质和海马区,以及右上额回和右小脑组成的顶顶海马网络。除了缺乏腹侧前运动和前额叶活动外,它可以被视为已知参与精神旋转和导航的网络的混合体。一种尝试性的解释提出了一种场景,即前突,也许与后顶枕皮质一起,提供了自我在空间中的假定心理形象,并用它来解释在海马区计算出的结果。在海马区,适当的VDI将基于空间方向图进行,适当的时标是一种固有属性。此外,似乎还涉及下顶皮质的专用计时系统。 fMRI-光学流-虚拟现实-速度的时间积分-路径积分-位移感知-顶叶皮层-海马

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号