首页> 外文期刊>Experimental Animals >Low Intensity Pulsed Ultrasound Accelerates Delayed Healing Process by Reducing the Time Required for the Completion of Endochondral Ossification in the Aged Mouse Femur Fracture Model
【24h】

Low Intensity Pulsed Ultrasound Accelerates Delayed Healing Process by Reducing the Time Required for the Completion of Endochondral Ossification in the Aged Mouse Femur Fracture Model

机译:低强度脉冲超声通过减少完成老年小鼠股骨骨折模型中的软骨内骨化所需的时间,加速了延迟的愈合过程

获取原文
获取原文并翻译 | 示例
       

摘要

The aim of this study is to clarify the effect of low intensity pulsed ultrasound (LIPUS) on shortening of the fracture healing period and endochondral ossification during the fracture healing process. We first established a model of aging-related delayed union fractures consisting of aged mouse (C57BL/6J; 40 weeks old) with closed femur fractures. We compared the healing process of 40-week-old mice to the healing process of 8-week-old (young) mice using radiological and histological analysis. In aged mice, some cartilage formation was observed 10 days after the fracture; however, endochondral ossification and hard callus bridging were observed 21 and 28 days after the fracture, respectively, whereas cartilage remained in the callus on day 28, suggesting delayed endochondral ossification following bone remodeling. Meanwhile, in aged mice with LIPUS treatment, cartilage formation was similar to that in aged mice without LIPUS; however, hard callus bridging and bone remodeling were observed 21 and 28 days after fracture, respectively, suggesting that LIPUS shortened the healing period due to promotion of endochondral ossification. Immunohistochemical analysis showed marked expression of vascular endotherial growth factor and neovascularization in the fibrous tissue comprising the periosteum that surrounded the whole callus. A cell migration test involving primary cultured human endothelial cells also showed promotion of cell migration by LIPUS. These results suggested that endothelial cell migration and neovascularization, which were observed around fracture sites, played a part in the mechanism of promotion of endochondral ossification by LIPUS.
机译:这项研究的目的是阐明低强度脉冲超声(LIPUS)在缩短骨折愈合过程中缩短骨折愈合时间和软骨内骨化的作用。我们首先建立了由衰老引起的延迟性联合骨折模型,该模型由年龄较大的小鼠(C57BL / 6J; 40周龄)和闭合性股骨骨折组成。我们使用放射学和组织学分析将40周龄小鼠的愈合过程与8周龄(年轻)小鼠的愈合过程进行了比较。在衰老的小鼠中,骨折后10天观察到一些软骨形成。然而,骨折后21天和28天分别观察到软骨内骨化和硬性骨call桥接,而软骨在第28天仍保留在软骨中,表明骨重塑后软骨内骨化延迟。同时,在接受LIPUS治疗的老年小鼠中,软骨形成与未使用LIPUS的老年小鼠相似。然而,在骨折后21天和28天分别观察到硬愈伤组织桥接和骨重塑,这表明LIPUS由于促进了软骨内骨化而缩短了愈合时间。免疫组织化学分析显示,在包括围绕整个愈伤组织的骨膜的纤维组织中,血管内皮生长因子和新生血管形成明显表达。涉及原代培养的人内皮细胞的细胞迁移试验还显示,LIPUS促进了细胞迁移。这些结果表明,在骨折部位周围观察到的内皮细胞迁移和新血管形成在LIPUS促进软骨内骨化的机制中起作用。

著录项

  • 来源
    《Experimental Animals》 |2011年第4期|p.385-395|共11页
  • 作者单位

    Departments of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato,Sagamihara Minami-ku, 252-0374 Kanagawa, Japan;

    Departments of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato,Sagamihara Minami-ku, 252-0374 Kanagawa, Japan;

    Departments of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato,Sagamihara Minami-ku, 252-0374 Kanagawa, Japan;

    Department of Maxillofacial Diagnostic Science and Functional Biology, Kanagawa Dental College, 82 Inaoka-cho,Yokosuka 238-8580, Kanagawa, Japan;

    Departments of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato,Sagamihara Minami-ku, 252-0374 Kanagawa, Japan;

    Kyushu Rosai Hospital, 21-3—1 Kuzuhara-Takamatsu,Kokura Minami, Kitaksyushu, 800-0296 Fukuoka, Japan;

    Departments of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato,Sagamihara Minami-ku, 252-0374 Kanagawa, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    aged mouse; endochondral ossification; fracture repair; low intensity pulsed ultrasound;

    机译:老鼠软骨内骨化骨折修复低强度脉冲超声;
  • 入库时间 2022-08-18 01:23:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号